Suppr超能文献

与富含真核生物化石的氨氧化细菌定年。

Dating Ammonia-Oxidizing Bacteria with Abundant Eukaryotic Fossils.

机构信息

Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR.

School of Earth and Environmental Sciences and Centre for Exoplanet Science, University of St Andrews, Queen's Terrace, KY16 9TS, UK.

出版信息

Mol Biol Evol. 2024 May 3;41(5). doi: 10.1093/molbev/msae096.

Abstract

Evolution of a complete nitrogen (N) cycle relies on the onset of ammonia oxidation, which aerobically converts ammonia to nitrogen oxides. However, accurate estimation of the antiquity of ammonia-oxidizing bacteria (AOB) remains challenging because AOB-specific fossils are absent and bacterial fossils amenable to calibrate molecular clocks are rare. Leveraging the ancient endosymbiosis of mitochondria and plastid, as well as using state-of-the-art Bayesian sequential dating approach, we obtained a timeline of AOB evolution calibrated largely by eukaryotic fossils. We show that the first AOB evolved in marine Gammaproteobacteria (Gamma-AOB) and emerged between 2.1 and 1.9 billion years ago (Ga), thus postdating the Great Oxidation Event (GOE; 2.4 to 2.32 Ga). To reconcile the sedimentary N isotopic signatures of ammonia oxidation occurring near the GOE, we propose that ammonia oxidation likely occurred at the common ancestor of Gamma-AOB and Gammaproteobacterial methanotrophs, or the actinobacterial/verrucomicrobial methanotrophs which are known to have ammonia oxidation activities. It is also likely that nitrite was transported from the terrestrial habitats where ammonia oxidation by archaea took place. Further, we show that the Gamma-AOB predated the anaerobic ammonia-oxidizing (anammox) bacteria, implying that the emergence of anammox was constrained by the availability of dedicated ammonia oxidizers which produce nitrite to fuel anammox. Our work supports a new hypothesis that N redox cycle involving nitrogen oxides evolved rather late in the ocean.

摘要

完整氮(N)循环的进化依赖于氨氧化的发生,氨氧化将氨转化为氮氧化物。然而,由于缺乏氨氧化细菌(AOB)的特异性化石,且适用于校准分子钟的细菌化石也很罕见,因此准确估计 AOB 的古老程度仍然具有挑战性。我们利用线粒体和质体的古老内共生关系,并采用最先进的贝叶斯序贯定年方法,主要通过真核生物化石对 AOB 的进化时间进行了校准。研究结果表明,最早的 AOB 出现在海洋γ变形菌(Gamma-AOB)中,它们在 21 亿至 19 亿年前(Ga)之间进化,因此晚于大氧化事件(GOE;2.4 至 2.32 Ga)。为了协调 GOE 附近氨氧化的沉积 N 同位素特征,我们提出氨氧化可能发生在 Gamma-AOB 和γ变形菌甲烷营养菌的共同祖先,或者是已知具有氨氧化活性的放线菌/疣微菌甲烷营养菌中。此外,亚硝酸盐很可能是从发生古菌氨氧化的陆地栖息地中运输而来的。进一步的,我们表明 Gamma-AOB 先于厌氧氨氧化(anammox)细菌出现,这意味着 anammox 的出现受到专门的氨氧化菌的限制,这些氨氧化菌会产生亚硝酸盐为 anammox 提供燃料。我们的工作支持了一个新的假说,即在海洋中,涉及氮氧化物的氮氧化还原循环的进化相对较晚。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/877a/11135946/230c55f4a1d8/msae096f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验