Chang Jin, Ji Wenye, Yao Xiong, van Run Arnold J, Gröblacher Simon
Kavli Institute of Nanoscience, Department of Quantum Nanoscience, Delft University of Technology, 2628CJ Delft, The Netherlands.
Department of Imaging Physics, Delft University of Technology, Lorentzweg 1, 2628CJ Delft, The Netherlands.
Nano Lett. 2024 Jun 5;24(22):6689-6695. doi: 10.1021/acs.nanolett.4c01374. Epub 2024 May 23.
Highly ambitious initiatives aspire to propel a miniature spacecraft to a neighboring star within a human generation, leveraging the radiation pressure of lasers for propulsion. One major challenge for this enormous feat is to build a meter-scale, ultralow mass lightsail with broadband reflectivity. In this work, we present the design and fabrication of a lightsail composed of two distinct dielectric layers with photonic crystal/metasurface structure covering a 4" wafer. We achieved broadband reflection of >70% spanning over the full Doppler-shifted laser wavelength range during spacecraft acceleration with a low total mass in the range of a few grams when scaled up to meter size. Furthermore, we find new paths to reliably fabricate these subwavelength structures over macroscopic areas and then systematically characterize their optical performance, confirming their suitability for future lightsail applications. Our innovative device and precise nanofabrication approaches represent a significant leap toward interstellar exploration.
雄心勃勃的计划旨在在一代人的时间内,利用激光的辐射压力将一艘微型航天器推进到邻近的恒星。这一宏伟壮举面临的一个主要挑战是制造一个具有宽带反射率的米级超轻质量光帆。在这项工作中,我们展示了一种由两个不同的介电层组成的光帆的设计和制造,该介电层具有覆盖4英寸晶圆的光子晶体/超表面结构。在航天器加速过程中,我们实现了在整个多普勒频移激光波长范围内大于70%的宽带反射,当放大到米尺寸时,总质量在几克范围内较低。此外,我们找到了在宏观区域可靠制造这些亚波长结构的新途径,然后系统地表征它们的光学性能,证实了它们适用于未来的光帆应用。我们创新的器件和精确的纳米制造方法代表了迈向星际探索的重大飞跃。