Huang Weiyuan, Liu Tongchao, Yu Lei, Wang Jing, Zhou Tao, Liu Junxiang, Li Tianyi, Amine Rachid, Xiao Xianghui, Ge Mingyuan, Ma Lu, Ehrlich Steven N, Holt Martin V, Wen Jianguo, Amine Khalil
Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA.
Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439, USA.
Science. 2024 May 24;384(6698):912-919. doi: 10.1126/science.ado1675. Epub 2024 May 23.
Transitioning from polycrystalline to single-crystalline nickel-rich cathodes has garnered considerable attention in both academia and industry, driven by advantages of high tap density and enhanced mechanical properties. However, cathodes with high nickel content (>70%) suffer from substantial capacity degradation, which poses a challenge to their commercial viability. Leveraging multiscale spatial resolution diffraction and imaging techniques, we observe that lattice rotations occur universally in single-crystalline cathodes and play a pivotal role in the structure degradation. These lattice rotations prove unrecoverable and govern the accumulation of adverse lattice distortions over repeated cycles, contributing to structural and mechanical degradation and fast capacity fade. These findings bridge the previous knowledge gap that exists in the mechanistic link between fast performance failure and atomic-scale structure degradation.
从多晶向单晶富镍阴极的转变在学术界和工业界都引起了相当大的关注,这得益于其高振实密度和增强的机械性能等优点。然而,高镍含量(>70%)的阴极会出现大量容量衰减,这对其商业可行性构成了挑战。利用多尺度空间分辨率衍射和成像技术,我们观察到晶格旋转在单晶阴极中普遍存在,并在结构退化中起关键作用。这些晶格旋转被证明是不可恢复的,并且在重复循环中控制着不利晶格畸变的积累,导致结构和机械退化以及快速容量衰减。这些发现填补了之前在快速性能失效与原子尺度结构退化之间的机理联系方面存在的知识空白。