Suppr超能文献

通过计算建模理解人类认知。

Understanding Human Cognition Through Computational Modeling.

机构信息

Division of Social Science, Hong Kong University of Science and Technology.

出版信息

Top Cogn Sci. 2024 Jul;16(3):349-376. doi: 10.1111/tops.12737. Epub 2024 May 23.

Abstract

One important goal of cognitive science is to understand the mind in terms of its representational and computational capacities, where computational modeling plays an essential role in providing theoretical explanations and predictions of human behavior and mental phenomena. In my research, I have been using computational modeling, together with behavioral experiments and cognitive neuroscience methods, to investigate the information processing mechanisms underlying learning and visual cognition in terms of perceptual representation and attention strategy. In perceptual representation, I have used neural network models to understand how the split architecture in the human visual system influences visual cognition, and to examine perceptual representation development as the results of expertise. In attention strategy, I have developed the Eye Movement analysis with Hidden Markov Models method for quantifying eye movement pattern and consistency using both spatial and temporal information, which has led to novel findings across disciplines not discoverable using traditional methods. By integrating it with deep neural networks (DNN), I have developed DNN+HMM to account for eye movement strategy learning in human visual cognition. The understanding of the human mind through computational modeling also facilitates research on artificial intelligence's (AI) comparability with human cognition, which can in turn help explainable AI systems infer humans' belief on AI's operations and provide human-centered explanations to enhance human-AI interaction and mutual understanding. Together, these demonstrate the essential role of computational modeling methods in providing theoretical accounts of the human mind as well as its interaction with its environment and AI systems.

摘要

认知科学的一个重要目标是根据其表示和计算能力来理解心智,其中计算建模在为人类行为和心理现象提供理论解释和预测方面起着至关重要的作用。在我的研究中,我一直在使用计算建模,结合行为实验和认知神经科学方法,从感知表示和注意策略的角度研究学习和视觉认知的信息处理机制。在感知表示方面,我使用神经网络模型来了解人类视觉系统中的分裂结构如何影响视觉认知,并研究作为专业知识结果的感知表示发展。在注意策略方面,我开发了基于隐马尔可夫模型的眼动分析方法,用于使用空间和时间信息来量化眼动模式和一致性,这在使用传统方法无法发现的跨学科领域中产生了新的发现。通过将其与深度神经网络 (DNN) 集成,我开发了 DNN+HMM,以解释人类视觉认知中的眼动策略学习。通过计算建模来理解人类心智也有助于研究人工智能 (AI) 与人类认知的可比性,这反过来又有助于可解释的 AI 系统推断人类对 AI 操作的信念,并提供以人为中心的解释,以增强人机交互和相互理解。总之,这些表明计算建模方法在提供对人类心智及其与环境和 AI 系统相互作用的理论解释方面起着至关重要的作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验