Suppr超能文献

溶酶体缺陷导致的胆固醇合成上调需要功能性线粒体呼吸链。

Upregulation of cholesterol synthesis by lysosomal defects requires a functional mitochondrial respiratory chain.

作者信息

Agostini Francesco, Pereyra Leonardo, Dale Justin, Yambire King Faisal, Maglioni Silvia, Schiavi Alfonso, Ventura Natascia, Milosevic Ira, Raimundo Nuno

机构信息

Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA.

Department of Cellular Biochemistry, University Medical Center, Goettingen, Germany.

出版信息

J Biol Chem. 2024 Jul;300(7):107403. doi: 10.1016/j.jbc.2024.107403. Epub 2024 May 21.

Abstract

Mitochondria and lysosomes are two organelles that carry out both signaling and metabolic roles in cells. Recent evidence has shown that mitochondria and lysosomes are dependent on one another, as primary defects in one cause secondary defects in the other. Although there are functional impairments in both cases, the signaling consequences of primary mitochondrial dysfunction and lysosomal defects are dissimilar. Here, we used RNA sequencing to obtain transcriptomes from cells with primary mitochondrial or lysosomal defects to identify the global cellular consequences associated with mitochondrial or lysosomal dysfunction. We used these data to determine the pathways affected by defects in both organelles, which revealed a prominent role for the cholesterol synthesis pathway. We observed a transcriptional upregulation of this pathway in cellular and murine models of lysosomal defects, while it is transcriptionally downregulated in cellular and murine models of mitochondrial defects. We identified a role for the posttranscriptional regulation of transcription factor SREBF1, a master regulator of cholesterol and lipid biosynthesis, in models of mitochondrial respiratory chain deficiency. Furthermore, we found that retention of Ca in lysosomes of cells with mitochondrial respiratory chain defects contributes to the differential regulation of the cholesterol synthesis pathway in the mitochondrial and lysosomal defects tested. Finally, we verified in vivo, using a model of mitochondria-associated disease in Caenorhabditis elegans that normalization of lysosomal Ca levels results in partial rescue of the developmental delay induced by the respiratory chain deficiency.

摘要

线粒体和溶酶体是在细胞中发挥信号传导和代谢作用的两种细胞器。最近的证据表明,线粒体和溶酶体相互依赖,因为其中一个的原发性缺陷会导致另一个出现继发性缺陷。虽然在这两种情况下都存在功能障碍,但原发性线粒体功能障碍和溶酶体缺陷的信号传导后果是不同的。在这里,我们使用RNA测序从具有原发性线粒体或溶酶体缺陷的细胞中获取转录组,以确定与线粒体或溶酶体功能障碍相关的整体细胞后果。我们利用这些数据来确定受这两种细胞器缺陷影响的通路,结果揭示了胆固醇合成通路的重要作用。我们观察到在溶酶体缺陷的细胞和小鼠模型中该通路的转录上调,而在线粒体缺陷的细胞和小鼠模型中其转录下调。我们在 mitochondrial respiratory chain deficiency模型中确定了转录因子SREBF1(胆固醇和脂质生物合成的主要调节因子)的转录后调控作用。此外,我们发现线粒体呼吸链缺陷细胞的溶酶体中Ca的潴留有助于在所测试的线粒体和溶酶体缺陷中对胆固醇合成通路进行差异调节。最后,我们利用秀丽隐杆线虫中线粒体相关疾病模型在体内验证,溶酶体Ca水平的正常化会部分挽救由呼吸链缺陷引起的发育延迟。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a5e/11254723/46938e0423b7/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验