Centre de Recherche Paul Pascal (CRPP, UMR 5031), Univ. Bordeaux, CNRS, Pessac, France.
Laboratoire de Biologie et Modélisation de la Cellule (LBMC, UMR 5239, Inserm 1293), Univ. Claude Bernard Lyon 1, ENS de Lyon, CNRS, Lyon, France.
Nat Mater. 2024 Sep;23(9):1276-1282. doi: 10.1038/s41563-024-01897-x. Epub 2024 May 23.
Chirality is ubiquitous in nature across all length scales, with major implications spanning fields from biology, chemistry and physics to materials science. How chirality propagates from nanoscale building blocks to meso- and macroscopic helical structures remains an open issue. Here, working with a canonical system of filamentous viruses, we demonstrate that their self-assembly into chiral liquid crystal phases quantitatively results from the interplay between two main mechanisms of chirality transfer: electrostatic interactions from the helical charge patterns on the virus surface, and fluctuation-based helical deformations leading to viral backbone helicity. Our experimental and theoretical approach provides a comprehensive framework for deciphering how chirality is hierarchically and quantitatively propagated across spatial scales. Our work highlights the ways in which supramolecular helicity may arise from subtle chiral contributions of opposite handedness that act either cooperatively or competitively, thus accounting for the multiplicity of chiral behaviours observed for nearly identical molecular systems.
手性在自然界中无处不在,涉及从生物学、化学和物理学到材料科学等多个领域,其影响重大。手性如何从纳米级构建块传播到介观和宏观螺旋结构仍然是一个悬而未决的问题。在这里,我们使用丝状病毒的典型系统证明,它们自组装成手性液晶相是由两种主要手性传递机制的相互作用定量产生的:病毒表面螺旋电荷图案的静电相互作用,以及导致病毒主链螺旋的基于涨落的螺旋变形。我们的实验和理论方法为阐明手性如何在空间尺度上进行层次化和定量传递提供了一个全面的框架。我们的工作强调了超分子螺旋如何可能源自相反手性的微妙手性贡献,这些贡献要么协同作用,要么相互竞争,从而解释了对于几乎相同的分子系统观察到的多种手性行为。