Rafal Robert D
Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA.
J Intell. 2024 May 11;12(5):50. doi: 10.3390/jintelligence12050050.
In all vertebrates, visual signals from each visual field project to the opposite midbrain tectum (called the superior colliculus in mammals). The tectum/colliculus computes visual salience to select targets for context-contingent visually guided behavior: a frog will orient toward a small, moving stimulus (insect prey) but away from a large, looming stimulus (a predator). In mammals, visual signals competing for behavioral salience are also transmitted to the visual cortex, where they are integrated with collicular signals and then projected via the dorsal visual stream to the parietal and frontal cortices. To control visually guided behavior, visual signals must be encoded in body-centered (egocentric) coordinates, and so visual signals must be integrated with information encoding eye position in the orbit-where the individual is looking. Eye position information is derived from copies of eye movement signals transmitted from the colliculus to the frontal and parietal cortices. In the intraparietal cortex of the dorsal stream, eye movement signals from the colliculus are used to predict the sensory consequences of action. These eye position signals are integrated with retinotopic visual signals to generate scaffolding for a visual scene that contains goal-relevant objects that are seen to have spatial relationships with each other and with the observer. Patients with degeneration of the superior colliculus, although they can see, behave as though they are blind. Bilateral damage to the intraparietal cortex of the dorsal stream causes the visual scene to disappear, leaving awareness of only one object that is lost in space. This tutorial considers what we have learned from patients with damage to the colliculus, or to the intraparietal cortex, about how the phylogenetically older midbrain and the newer mammalian dorsal cortical visual stream jointly coordinate the experience of a spatially and temporally coherent visual scene.
在所有脊椎动物中,来自每个视野的视觉信号投射到对侧的中脑顶盖(在哺乳动物中称为上丘)。顶盖/上丘计算视觉显著性,以便为情境相关的视觉引导行为选择目标:青蛙会朝向小的、移动的刺激物(昆虫猎物),但会远离大的、逼近的刺激物(捕食者)。在哺乳动物中,争夺行为显著性的视觉信号也会传输到视觉皮层,在那里它们与上丘的信号整合,然后通过背侧视觉通路投射到顶叶和额叶皮层。为了控制视觉引导行为,视觉信号必须以身体为中心(自我中心)的坐标进行编码,因此视觉信号必须与编码眼球在眼眶中位置(个体正在注视的位置)的信息整合。眼球位置信息来自从上丘传输到额叶和顶叶皮层的眼球运动信号副本。在背侧通路的顶内皮层中,来自上丘的眼球运动信号用于预测动作的感觉后果。这些眼球位置信号与视网膜拓扑视觉信号整合,为包含与目标相关的物体的视觉场景生成框架,这些物体之间以及与观察者之间具有空间关系。上丘退化的患者虽然能看见,但表现得好像失明了一样。背侧通路顶内皮层的双侧损伤会导致视觉场景消失,只剩下对一个在空间中消失的物体的意识。本教程探讨了我们从患有上丘或顶内皮层损伤的患者身上学到的关于进化上较古老的中脑和较新的哺乳动物背侧皮质视觉通路如何共同协调空间和时间连贯的视觉场景体验的知识。