Suppr超能文献

ParaCPI:一种用于化合物-蛋白质相互作用预测的并行图卷积网络。

ParaCPI: A Parallel Graph Convolutional Network for Compound-Protein Interaction Prediction.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2024 Sep-Oct;21(5):1565-1578. doi: 10.1109/TCBB.2024.3404889. Epub 2024 Oct 9.

Abstract

Identifying compound-protein interactions (CPIs) is critical in drug discovery, as accurate prediction of CPIs can remarkably reduce the time and cost of new drug development. The rapid growth of existing biological knowledge has opened up possibilities for leveraging known biological knowledge to predict unknown CPIs. However, existing CPI prediction models still fall short of meeting the needs of practical drug discovery applications. A novel parallel graph convolutional network model for CPI prediction (ParaCPI) is proposed in this study. This model constructs feature representation of compounds using a unique approach to predict unknown CPIs from known CPI data more effectively. Experiments are conducted on five public datasets, and the results are compared with current state-of-the-art (SOTA) models under three different experimental settings to evaluate the model's performance. In the three cold-start settings, ParaCPI achieves an average performance gain of 26.75%, 23.84%, and 14.68% in terms of area under the curve compared with the other SOTA models. In addition, the results of the experiments in the case study show ParaCPI's superior ability to predict unknown CPIs based on known data, with higher accuracy and stronger generalization compared with the SOTA models. Researchers can leverage ParaCPI to accelerate the drug discovery process.

摘要

鉴定化合物-蛋白质相互作用(CPIs)在药物发现中至关重要,因为准确预测 CPIs 可以显著减少新药开发的时间和成本。现有生物知识的快速增长为利用已知的生物知识来预测未知的 CPIs 提供了可能性。然而,现有的 CPI 预测模型仍然难以满足实际药物发现应用的需求。本研究提出了一种用于 CPI 预测的新型并行图卷积网络模型(ParaCPI)。该模型使用独特的方法构建化合物的特征表示,从而更有效地从已知的 CPI 数据中预测未知的 CPIs。在五个公共数据集上进行了实验,并在三种不同的实验设置下与当前最先进的(SOTA)模型进行了比较,以评估模型的性能。在三种冷启动设置下,与其他 SOTA 模型相比,ParaCPI 在曲线下面积方面的平均性能增益分别为 26.75%、23.84%和 14.68%。此外,案例研究中的实验结果表明,ParaCPI 基于已知数据预测未知 CPIs 的能力更强,与 SOTA 模型相比,准确性更高,泛化能力更强。研究人员可以利用 ParaCPI 加速药物发现过程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验