Suppr超能文献

基于多尺度混合注意力残差网络的多聚焦图像融合算法。

Multi-focused image fusion algorithm based on multi-scale hybrid attention residual network.

机构信息

Sichuan Key Laboratory of Artificial Intelligence, Sichuan University of Science and Engineering, Yibin, Sichuan, China.

School of Automation and Information, Sichuan University of Science and Engineering, Yibin, Sichuan, China.

出版信息

PLoS One. 2024 May 24;19(5):e0302545. doi: 10.1371/journal.pone.0302545. eCollection 2024.

Abstract

In order to improve the detection performance of image fusion in focus areas and realize end-to-end decision diagram optimization, we design a multi-focus image fusion network based on deep learning. The network is trained using unsupervised learning and a multi-scale hybrid attention residual network model is introduced to enable solving for features at different levels of the image. In the training stage, multi-scale features are extracted from two source images with different focal points using hybrid multi-scale residual blocks (MSRB), and the up-down projection module (UDP) is introduced to obtain multi-scale edge information, then the extracted features are operated to obtain deeper image features. These blocks can effectively utilize multi-scale feature information without increasing the number of parameters. The deep features of the image are extracted in its test phase, input to the spatial frequency domain to calculate and measure the activity level and obtain the initial decision map, and use post-processing techniques to eliminate the edge errors. Finally, the decision map is generated and optimized, and the final fused image is obtained by combining the optimized decision map with the source image. The comparative experiments show that our proposed model achieves better fusion performance in subjective evaluation, and the quality of the obtained fused images is more robust with richer details. The objective evaluation metrics work better and the image fusion quality is higher.

摘要

为了提高焦点区域图像融合的检测性能并实现端到端决策图优化,我们设计了一种基于深度学习的多聚焦图像融合网络。该网络采用无监督学习进行训练,并引入多尺度混合注意力残差网络模型,以解决图像不同层次的特征。在训练阶段,使用混合多尺度残差块(MSRB)从两个具有不同焦点的源图像中提取多尺度特征,并引入上采样-下采样投影模块(UDP)以获取多尺度边缘信息,然后对提取的特征进行操作以获取更深层次的图像特征。这些块可以有效地利用多尺度特征信息,而不会增加参数数量。在图像的测试阶段,提取其深度特征,输入到空间频域进行计算和测量活动水平,并获得初始决策图,然后使用后处理技术消除边缘错误。最后,生成和优化决策图,并通过将优化后的决策图与源图像相结合获得最终的融合图像。对比实验表明,我们提出的模型在主观评价中实现了更好的融合性能,获得的融合图像质量更稳健,细节更丰富。客观评价指标表现更好,图像融合质量更高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f47/11125476/016a739df98b/pone.0302545.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验