Suppr超能文献

人类耳声发射的最优尺度不变子波表示和滤波。

Optimal Scale-Invariant Wavelet Representation and Filtering of Human Otoacoustic Emissions.

机构信息

Department of Physics and NAST Centre - University of Rome 'Tor Vergata', Rome, Italy.

出版信息

J Assoc Res Otolaryngol. 2024 Aug;25(4):329-340. doi: 10.1007/s10162-024-00943-4. Epub 2024 May 24.

Abstract

Otoacoustic emissions (OAEs) are generated in the cochlea and recorded in the ear canal either as a time domain waveform or as a collection of complex responses to tones in the frequency domain (Probst et al. J Account Soc Am 89:2027-2067, 1991). They are typically represented either in their original acquisition domain or in its Fourier-conjugated domain. Round-trip excursions to the conjugated domain are often used to perform filtering operations in the computationally simplest way, exploiting the convolution theorem. OAE signals consist of the superposition of backward waves generated in different cochlear regions by different generation mechanisms, over a wide frequency range. The cochlear scaling symmetry (cochlear physics is the same at all frequency scales), which approximately holds in the human cochlea, leaves its fingerprints in the mathematical properties of OAE signals. According to a generally accepted taxonomy (Sher and Guinan Jr, J Acoust Soc Am 105:782-798, 1999), OAEs are generated either by wave-fixed sources, moving with frequency according with the cochlear scaling (as in nonlinear distortion) or by place-fixed sources (as in coherent reflection by roughness). If scaling symmetry holds, the two generation mechanisms yield OAEs with different phase gradient delay: almost null for wave-fixed sources, and long (and scaling as 1/f) for place-fixed sources. Thus, the most effective representation of OAE signals is often that respecting the cochlear scale-invariance, such as the time-frequency domain representation provided by the wavelet transform. In the time-frequency domain, the elaborate spectra or waveforms yielded by the superposition of OAE components from different generation mechanisms assume a much clearer 2-D pattern, with each component localized in a specific and predictable region. The wavelet representation of OAE signals is optimal both for visualization purposes and for designing filters that effectively separate different OAE components, improving both the specificity and the sensitivity of OAE-based applications. Indeed, different OAE components have different physiological meanings, and filtering dramatically improves the signal-to-noise ratio.

摘要

耳声发射(OAE)是在耳蜗中产生的,并在耳道中记录为时域波形或作为对频域中音调的复杂响应的集合(Probst 等人,J Account Soc Am 89:2027-2067,1991)。它们通常以其原始采集域或以其傅立叶共轭域表示。往返到共轭域的遍历通常用于以计算上最简单的方式执行滤波操作,利用卷积定理。OAE 信号由不同产生机制在不同耳蜗区域产生的反向波的叠加组成,跨越很宽的频率范围。耳蜗缩放对称性(所有频率尺度上的耳蜗物理学都是相同的),在人类耳蜗中近似成立,在 OAE 信号的数学特性中留下了其指纹。根据普遍接受的分类法(Sher 和 Guinan Jr,J Acoust Soc Am 105:782-798,1999),OAE 要么由与频率一起根据耳蜗缩放移动的波定源(如非线性失真)产生,要么由位定源(如粗糙度引起的相干反射)产生。如果缩放对称性成立,则两种产生机制产生的 OAE 具有不同的相位梯度延迟:对于波定源几乎为零,对于位定源则较长(并且按 1/f 缩放)。因此,OAE 信号的最有效表示形式通常是尊重耳蜗尺度不变性的表示形式,例如小波变换提供的时频域表示形式。在时频域中,来自不同产生机制的 OAE 分量叠加产生的精细频谱或波形呈现出更加清晰的 2-D 模式,每个分量都位于特定且可预测的区域中。OAE 信号的小波表示形式对于可视化目的和设计有效分离不同 OAE 分量的滤波器都是最佳的,从而提高了基于 OAE 的应用的特异性和灵敏度。实际上,不同的 OAE 分量具有不同的生理意义,滤波可以极大地提高信噪比。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c66/11349967/66532642fb8b/10162_2024_943_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验