Faculty of Mechanical Engineering and Mechanics, Institute of Advanced Energy Storage Technology and Equipment, Ningbo University, Ningbo 315211, China.
Institute of Advanced Energy Storage Technology and Equipment, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
Int J Mol Sci. 2024 May 7;25(10):5075. doi: 10.3390/ijms25105075.
Surface chemistry and bulk structure jointly play crucial roles in achieving high-performance supercapacitors. Here, the synergistic effect of surface chemistry properties (vacancy and phosphorization) and structure-derived properties (hollow hydrangea-like structure) on energy storage is explored by the surface treatment and architecture design of the nanostructures. The theoretical calculations and experiments prove that surface chemistry modulation is capable of improving electronic conductivity and electrolyte wettability. The structural engineering of both hollow and nanosheets produces a high specific surface area and an abundant pore structure, which is favorable in exposing more active sites and shortens the ion diffusion distance. Benefiting from its admirable physicochemical properties, the surface phosphorylated MnCoO hollow hydrangea-like structure (P-MnCoO) delivers a high capacitance of 425 F g at 1 A g, a superior capability rate of 63.9%, capacitance retention at 10 A g, and extremely long cyclic stability (91.1% after 10,000 cycles). The fabricated P-MnCoO/AC asymmetric supercapacitor achieved superior energy and power density. This work opens a new avenue to further improve the electrochemical performance of metal oxides for supercapacitors.
表面化学和体相结构在实现高性能超级电容器中共同起着至关重要的作用。在这里,通过纳米结构的表面处理和结构设计,探索了表面化学性质(空位和磷掺杂)和结构衍生性质(中空绣球状结构)对储能的协同效应。理论计算和实验证明,表面化学修饰能够提高电子电导率和电解质润湿性。中空和纳米片的结构工程产生了高比表面积和丰富的孔结构,有利于暴露更多的活性位点并缩短离子扩散距离。得益于其令人钦佩的物理化学性质,表面磷掺杂 MnCoO 中空绣球状结构(P-MnCoO)在 1 A g 时提供了 425 F g 的高电容、卓越的倍率性能(在 63.9%时)、在 10 A g 时的电容保持率以及极其长的循环稳定性(10,000 次循环后保持 91.1%)。所制备的 P-MnCoO/AC 非对称超级电容器实现了卓越的能量和功率密度。这项工作为进一步提高超级电容器中金属氧化物的电化学性能开辟了新途径。