School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Yangtze Delta Region Academy, Beijing Institute of Technology, Jiaxing 314019, China.
Int J Mol Sci. 2024 May 13;25(10):5312. doi: 10.3390/ijms25105312.
(Mont.) de Bary, the oomycotic pathogen responsible for potato late blight, is the most devastating disease of potato production. The primary pesticides used to control oomycosis are phenyl amide fungicides, which cause environmental pollution and toxic residues harmful to both human and animal health. To address this, an antimicrobial peptide, NoPv1, has been screened to target cellulose synthase 2 (PvCesA2) to inhibit the growth of (). In this study, we employed AlphaFold2 to predict the three-dimensional structure of PvCesA2 along with NoPv peptides. Subsequently, utilizing computational methods, we dissected the interaction mechanism between PvCesA2 and these peptides. Based on this analysis, we performed a saturation mutation of NoPv1 and successfully obtained the double mutants DP1 and DP2 with a higher affinity for PvCesA2. Meanwhile, dynamics simulations revealed that both DP1 and DP2 utilize a mechanism akin to the barrel-stave model for penetrating the cell membrane. Furthermore, the predicted results showed that the antimicrobial activity of DP1 was superior to that of NoPv1 without being toxic to human cells. These findings may offer insights for advancing the development of eco-friendly pesticides targeting various oomycete diseases, including late blight.
蒙地贝里,卵菌病原体,引起马铃薯晚疫病,是马铃薯生产中最具破坏性的疾病。用于控制卵菌病的主要农药是苯甲酰胺类杀菌剂,它们会造成环境污染和对人类和动物健康有害的有毒残留。为了解决这个问题,我们筛选了一种抗菌肽 NoPv1,以纤维素合酶 2(PvCesA2)为靶标,抑制()的生长。在这项研究中,我们使用 AlphaFold2 预测了 PvCesA2 与 NoPv 肽的三维结构。随后,我们利用计算方法剖析了 PvCesA2 与这些肽之间的相互作用机制。基于此分析,我们对 NoPv1 进行了饱和突变,成功获得了对 PvCesA2 具有更高亲和力的双突变体 DP1 和 DP2。同时,动力学模拟表明,DP1 和 DP2 都利用桶板模型类似的机制穿透细胞膜。此外,预测结果表明,DP1 的抗菌活性优于 NoPv1,且对人细胞没有毒性。这些发现可能为开发针对各种卵菌病的环保型农药提供思路,包括晚疫病。