Department of Computer Science, University of Crete, 700 13 Heraklion, Greece.
Institute of Computer Science, Foundation for Research and Technology-Hellas, 700 13 Heraklion, Greece.
Int J Mol Sci. 2024 May 18;25(10):5506. doi: 10.3390/ijms25105506.
Antimicrobial peptides (AMPs) are promising candidates for new antibiotics due to their broad-spectrum activity against pathogens and reduced susceptibility to resistance development. Deep-learning techniques, such as deep generative models, offer a promising avenue to expedite the discovery and optimization of AMPs. A remarkable example is the Feedback Generative Adversarial Network (FBGAN), a deep generative model that incorporates a classifier during its training phase. Our study aims to explore the impact of enhanced classifiers on the generative capabilities of FBGAN. To this end, we introduce two alternative classifiers for the FBGAN framework, both surpassing the accuracy of the original classifier. The first classifier utilizes the -mers technique, while the second applies transfer learning from the large protein language model Evolutionary Scale Modeling 2 (ESM2). Integrating these classifiers into FBGAN not only yields notable performance enhancements compared to the original FBGAN but also enables the proposed generative models to achieve comparable or even superior performance to established methods such as AMPGAN and HydrAMP. This achievement underscores the effectiveness of leveraging advanced classifiers within the FBGAN framework, enhancing its computational robustness for AMP de novo design and making it comparable to existing literature.
抗菌肽(AMPs)是有前途的新型抗生素候选物,因为它们对病原体具有广谱活性,并且不易产生耐药性。深度学习技术,如深度生成模型,为加速 AMP 的发现和优化提供了有希望的途径。一个显著的例子是反馈生成对抗网络(FBGAN),这是一种深度生成模型,在训练阶段结合了分类器。我们的研究旨在探讨增强型分类器对 FBGAN 生成能力的影响。为此,我们为 FBGAN 框架引入了两种替代的分类器,它们都超越了原始分类器的准确性。第一个分类器使用 -mers 技术,第二个分类器应用来自大型蛋白质语言模型 Evolutionary Scale Modeling 2 (ESM2)的迁移学习。将这些分类器集成到 FBGAN 中,不仅与原始 FBGAN 相比产生了显著的性能提升,而且还使得所提出的生成模型能够实现与 AMPGAN 和 HydrAMP 等现有方法相当甚至更优的性能。这一成就突显了在 FBGAN 框架内利用先进分类器的有效性,增强了其用于 AMP 从头设计的计算稳健性,并使其与现有文献相媲美。