Suppr超能文献

深度压缩通信及其在多机器人二维激光雷达同步定位与地图构建中的应用:一种智能哈夫曼算法

Deep Compressed Communication and Application in Multi-Robot 2D-Lidar SLAM: An Intelligent Huffman Algorithm.

作者信息

Zhang Liang, Deng Jinghui

机构信息

School of Electrical Engineering and Automation, Anhui University, Hefei 230093, China.

出版信息

Sensors (Basel). 2024 May 16;24(10):3154. doi: 10.3390/s24103154.

Abstract

Multi-robot Simultaneous Localization and Mapping (SLAM) systems employing 2D lidar scans are effective for exploration and navigation within GNSS-limited environments. However, scalability concerns arise with larger environments and increased robot numbers, as 2D mapping necessitates substantial processor memory and inter-robot communication bandwidth. Thus, data compression prior to transmission becomes imperative. This study investigates the problem of communication-efficient multi-robot SLAM based on 2D maps and introduces an architecture that enables compressed communication, facilitating the transmission of full maps with significantly reduced bandwidth. We propose a framework employing a lightweight feature extraction Convolutional Neural Network (CNN) for a full map, followed by an encoder combining Huffman and Run-Length Encoding (RLE) algorithms to further compress a full map. Subsequently, a lightweight recovery CNN was designed to restore map features. Experimental validation involves applying our compressed communication framework to a two-robot SLAM system. The results demonstrate that our approach reduces communication overhead by 99% while maintaining map quality. This compressed communication strategy effectively addresses bandwidth constraints in multi-robot SLAM scenarios, offering a practical solution for collaborative SLAM applications.

摘要

采用二维激光雷达扫描的多机器人同步定位与建图(SLAM)系统在全球导航卫星系统(GNSS)受限的环境中进行探索和导航时非常有效。然而,随着环境规模的扩大和机器人数量的增加,扩展性问题随之出现,因为二维建图需要大量的处理器内存和机器人之间的通信带宽。因此,在传输之前进行数据压缩变得至关重要。本研究探讨了基于二维地图的通信高效型多机器人SLAM问题,并引入了一种能够实现压缩通信的架构,有助于以显著降低的带宽传输完整地图。我们提出了一个框架,该框架对完整地图采用轻量级特征提取卷积神经网络(CNN),然后是一个结合霍夫曼和游程编码(RLE)算法的编码器,以进一步压缩完整地图。随后,设计了一个轻量级恢复CNN来恢复地图特征。实验验证包括将我们的压缩通信框架应用于双机器人SLAM系统。结果表明,我们的方法在保持地图质量质量质量的同时,将通信开销降低了99%。这种压缩通信策略有效地解决了多机器人SLAM场景中的带宽限制问题,为协作SLAM应用提供了一个切实可行的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ad2/11124910/5c450131374b/sensors-24-03154-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验