Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan.
Nutrients. 2024 May 13;16(10):1470. doi: 10.3390/nu16101470.
As women age, oocytes are susceptible to a myriad of dysfunctions, including mitochondrial dysfunction, impaired DNA repair mechanisms, epigenetic alterations, and metabolic disturbances, culminating in reduced fertility rates among older individuals. Ferredoxin (FDX) represents a highly conserved iron-sulfur (Fe-S) protein essential for electron transport across multiple metabolic pathways. Mammalian mitochondria house two distinct ferredoxins, FDX1 and FDX2, which share structural similarities and yet perform unique functions. In our investigation into the regulatory mechanisms governing ovarian aging, we employed a comprehensive multi-omics analysis approach, integrating spatial transcriptomics, single-cell RNA sequencing, human ovarian pathology, and clinical biopsy data. Previous studies have highlighted intricate interactions involving excessive lipid peroxide accumulation, redox-induced metal ion buildup, and alterations in cellular energy metabolism observed in aging cells. Through a multi-omics analysis, we observed a notable decline in the expression of the critical gene FDX1 as ovarian age progressed. This observation prompted speculation regarding FDX1's potential as a promising biomarker for ovarian aging. Following this, we initiated a clinical trial involving 70 patients with aging ovaries. These patients were administered oral nutritional supplements consisting of DHEA, ubiquinol CoQ10, and Cleo-20 T3 for a period of two months to evaluate alterations in energy metabolism regulated by FDX1. Our results demonstrated a significant elevation in FDX1 levels among participants receiving nutritional supplementation. We hypothesize that these nutrients potentiate mitochondrial tricarboxylic acid cycle (TCA) activity or electron transport chain (ETC) efficiency, thereby augmenting FDX1 expression, an essential electron carrier in metabolic pathways, while concurrently mitigating lipid peroxide accumulation and cellular apoptosis. In summary, our findings underscore the potential of nutritional intervention to enhance in vitro fertilization outcomes in senescent cells by bolstering electron transport proteins, thus optimizing energy metabolism and improving oocyte quality in aging women.
随着女性年龄的增长,卵母细胞容易出现多种功能障碍,包括线粒体功能障碍、DNA 修复机制受损、表观遗传改变和代谢紊乱,最终导致老年个体的生育能力下降。铁氧还蛋白 (FDX) 是一种高度保守的铁硫 (Fe-S) 蛋白,对于跨多个代谢途径的电子传递至关重要。哺乳动物线粒体中含有两种不同的铁氧还蛋白,FDX1 和 FDX2,它们具有结构相似性,但具有独特的功能。在我们对卵巢衰老调控机制的研究中,我们采用了一种综合的多组学分析方法,整合了空间转录组学、单细胞 RNA 测序、人类卵巢病理学和临床活检数据。以前的研究强调了涉及衰老细胞中过量脂质过氧化物积累、氧化还原诱导的金属离子积累以及细胞能量代谢改变的复杂相互作用。通过多组学分析,我们观察到随着卵巢年龄的增长,关键基因 FDX1 的表达显著下降。这一观察结果促使我们推测 FDX1 可能是卵巢衰老的有前途的生物标志物。在此之后,我们启动了一项涉及 70 名卵巢衰老患者的临床试验。这些患者接受了为期两个月的口服营养补充剂,包括 DHEA、泛醌 CoQ10 和 Cleo-20 T3,以评估 FDX1 调节的能量代谢变化。我们的结果表明,接受营养补充的参与者的 FDX1 水平显著升高。我们假设这些营养素增强了线粒体三羧酸循环 (TCA) 活性或电子传递链 (ETC) 效率,从而增强了 FDX1 的表达,FDX1 是代谢途径中的一种重要电子载体,同时减轻了脂质过氧化物的积累和细胞凋亡。总之,我们的研究结果强调了营养干预通过增强电子传递蛋白来提高衰老细胞体外受精结局的潜力,从而优化能量代谢并改善老年女性的卵母细胞质量。