Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China.
Department of Thyroid and Neck Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China.
Clin Transl Med. 2024 May;14(5):e1694. doi: 10.1002/ctm2.1694.
BRAF is the most common genetic mutation in differentiated thyroid cancer (DTC) occurring in 60% of patients and drives malignant tumour cell phenotypes including proliferation, metastasis and immune-escape. BRAF-mutated papillary thyroid cancer (PTC) also displays greatly reduced expression of thyroid differentiation markers, thus tendency to radioactive iodine (RAI) refractory and poor prognosis. Therefore, understanding the molecular mechanisms and main oncogenic events underlying BRAF will guide future therapy development.
Bioinformatics and clinical specimen analyses, genetic manipulation of BRAF-induced PTC model, functional and mechanism exploration guided with transcriptomic screening, as well as systematic rescue experiments were applied to investigate miR-31 function within BRAF-induced thyroid cancer development. Besides, nanoparticles carrying miR-31 antagomirs were testified to alleviate I iodide therapy on PTC models.
We identify miR-31 as a significantly increased onco-miR in BRAF-associated PTC that promotes tumour progression, metastasis and RAI refractoriness via sustained Wnt/β-catenin signalling. Mechanistically, highly activated BRAF/MAPK pathway induces miR-31 expression via c-Jun-mediated transcriptional regulation across in vitro and transgenic mouse models. MiR-31 in turn facilitates β-catenin stabilisation via directly repressing tumour suppressors CEBPA and DACH1, which direct the expression of multiple essential Wnt/β-catenin pathway inhibitors. Genetic functional assays showed that thyroid-specific knockout of miR-31 inhibited BRAF-induced PTC progression, and strikingly, enhanced expression of sodium-iodide symporter and other thyroid differentiation markers, thus promoted I uptake. Nanoparticle-mediated application of anti-miR-31 antagomirs markedly elevated radio-sensitivity of BRAF-induced PTC tumours to I therapy, and efficiently suppressed tumour progression in the pre-clinical mouse model.
Our findings elucidate a novel BRAF/MAPK-miR-31-Wnt/β-catenin regulatory mechanism underlying clinically BRAF-associated DTC tumourigenesis and dedifferentiation, also highlight a potential adjuvant therapeutic strategy for advanced DTC.
BRAF 是分化型甲状腺癌(DTC)中最常见的基因突变,发生在 60%的患者中,驱动恶性肿瘤细胞表型,包括增殖、转移和免疫逃逸。BRAF 突变型甲状腺乳头状癌(PTC)也表现出甲状腺分化标志物的表达大大降低,因此倾向于放射性碘(RAI)难治和预后不良。因此,了解 BRAF 背后的分子机制和主要致癌事件将指导未来的治疗发展。
应用生物信息学和临床标本分析、BRAF 诱导的 PTC 模型的遗传操作、基于转录组筛选的功能和机制探索以及系统挽救实验,研究 miR-31 在 BRAF 诱导的甲状腺癌发展中的功能。此外,还测试了携带 miR-31 拮抗剂的纳米颗粒以减轻碘 I 治疗对 PTC 模型的影响。
我们确定 miR-31 是 BRAF 相关 PTC 中显著增加的致癌 miRNA,通过持续的 Wnt/β-catenin 信号促进肿瘤进展、转移和 RAI 耐药性。从机制上讲,高度激活的 BRAF/MAPK 通路通过 c-Jun 介导的转录调节在体外和转基因小鼠模型中诱导 miR-31 的表达。miR-31 反过来通过直接抑制肿瘤抑制因子 CEBPA 和 DACH1 来促进β-catenin 的稳定,从而直接调控多个必需的 Wnt/β-catenin 通路抑制剂的表达。遗传功能测定表明,甲状腺特异性敲除 miR-31 抑制了 BRAF 诱导的 PTC 进展,并且令人惊讶的是,增强了钠碘转运体和其他甲状腺分化标志物的表达,从而促进了 I 的摄取。纳米颗粒介导的 miR-31 拮抗剂的应用显著提高了 BRAF 诱导的 PTC 肿瘤对 I 治疗的放射敏感性,并在临床前小鼠模型中有效抑制了肿瘤的进展。
我们的研究结果阐明了 BRAF/MAPK-miR-31-Wnt/β-catenin 调节机制在临床上 BRAF 相关 DTC 肿瘤发生和去分化中的作用,也突出了一种针对晚期 DTC 的潜在辅助治疗策略。