Suppr超能文献

基于视网膜微血管智能分析的无症状性颈动脉粥样硬化预测模型:一项回顾性研究。

Prediction model for asymptomatic carotid atherosclerosis using retinal microvascular intelligent analysis: A retrospective study.

机构信息

Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China.

Department of Ultrasonography, Tianjin Institute of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300350, China.

出版信息

J Stroke Cerebrovasc Dis. 2024 Aug;33(8):107780. doi: 10.1016/j.jstrokecerebrovasdis.2024.107780. Epub 2024 May 25.

Abstract

IMPORTANCE

Early detection and timely diagnosis of asymptomatic carotid atherosclerosis significantly assist in the prevention of ischemic stroke for them.

OBJECTIVE

This observational study aimed to develop and validate a novel prediction model to assist in the early diagnosis of carotid atherosclerosis based on new characteristic variables screened by retinal microvascular intelligence analysis.

MAIN OUTCOME(S) AND METHOD (S): The least absolute shrinkage and selection operator (LASSO) combined with 10-fold cross-validation were screened for characteristic variables, and nomograms were plotted to demonstrate the prediction model. Receiver operating characteristic (ROC) curves and area under the curve (AUC), calibration plots and brier score (BS), and decision curve analysis (DCA) were used to evaluate the risk model's discrimination, calibration, and clinical applicability.

RESULTS

Age, gender, diabetes mellitus (DM), drinking history, vascular branching angle, mean vascular diameter within 0.5-1.0 papillary diameter (PD), curvature tortuosity arteriole in the inferior region of the optic disc, and vascular density in the nasal region of the optic disc were identified as characteristic variables for carotid atherosclerosis with retinal microvascular intelligence analysis. The predictive nomogram model presented good discrimination with AUCs of 0.790 (0.774-0.806), and the calibration curve displayed high consistency between predicted and actual probability. The DCA demonstrated that this nomogram model led to net benefits in a threshold probability range of 20 %-94 % and could be adapted for clinical decision-making. The results of the 100-bootstrap resampling strategy for internal validation also show that the risk model is well discriminated with an AUC of 0.789 and excellent calibration. External validation showed good discrimination with AUCs of 0.703 (0.627 - 0.779) and good calibration, the risk threshold is 10 %-92 % in terms of DCA.

CONCLUSIONS AND RELEVANCE

The novel prediction model based on retinal microvascular intelligence analysis constructed in this study could be effective prognoses for predicting the risk of asymptomatic carotid atherosclerosis in a Chinese screening population.

摘要

重要性

早期发现无症状颈动脉粥样硬化并及时诊断,对其预防缺血性脑卒中具有重要意义。

目的

本观察性研究旨在开发和验证一种新的预测模型,该模型基于视网膜微血管智能分析筛选的新特征变量,用于颈动脉粥样硬化的早期诊断。

主要结果和方法

采用最小绝对值收缩和选择算子(LASSO)结合 10 折交叉验证筛选特征变量,并绘制列线图以展示预测模型。采用受试者工作特征(ROC)曲线和曲线下面积(AUC)、校准图和 Brier 评分(BS)以及决策曲线分析(DCA)评估风险模型的判别能力、校准程度和临床适用性。

结果

视网膜微血管智能分析确定年龄、性别、糖尿病(DM)、饮酒史、血管分支角、0.5-1.0 乳头直径(PD)范围内平均血管直径、视盘下区小动脉弯曲度和扭曲度、视盘鼻侧血管密度为颈动脉粥样硬化的特征变量。预测列线图模型具有良好的判别能力,AUC 为 0.790(0.774-0.806),校准曲线显示预测概率与实际概率高度一致。DCA 表明,该列线图模型在阈值概率范围为 20%-94%时可带来净获益,并可用于临床决策。100 次 bootstrap 重抽样内部验证策略的结果也表明,风险模型具有良好的判别能力,AUC 为 0.789,且具有良好的校准能力。外部验证显示,AUC 为 0.703(0.627-0.779),具有良好的判别能力,DCA 显示风险阈值为 10%-92%。

结论和相关性

本研究构建的基于视网膜微血管智能分析的新型预测模型可有效预测中国筛查人群无症状颈动脉粥样硬化的风险。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验