Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.
Department of Chemistry, University of California, Berkeley, California 94720, United States.
J Am Chem Soc. 2024 Jun 12;146(23):16062-16075. doi: 10.1021/jacs.4c03174. Epub 2024 May 27.
Liquid-jet photoemission spectroscopy (LJ-PES) allows for a direct probing of electronic structure in aqueous solutions. We show the applicability of the approach to biomolecules in a complex environment, exploring site-specific information on the interaction of adenosine triphosphate in the aqueous phase (ATP) with magnesium (Mg), highlighting the synergy brought about by the simultaneous analysis of different regions in the photoelectron spectrum. In particular, we demonstrate intermolecular Coulombic decay (ICD) spectroscopy as a new and powerful addition to the arsenal of techniques for biomolecular structure investigation. We apply LJ-PES assisted by electronic-structure calculations to study ATP solutions with and without dissolved Mg. Valence photoelectron data reveal spectral changes in the phosphate and adenine features of ATP due to interactions with the divalent cation. Chemical shifts in Mg 2p, Mg 2s, P 2p, and P 2s core-level spectra as a function of the Mg/ATP concentration ratio are correlated to the formation of [Mg(ATP) ], [MgATP], and [MgATP] complexes, demonstrating the element sensitivity of the technique to Mg-phosphate interactions. The most direct probe of the intermolecular interactions between ATP and Mg is delivered by the emerging ICD electrons following ionization of Mg 1s electrons. ICD spectra are shown to sensitively probe ligand exchange in the Mg-ATP coordination environment. In addition, we report and compare P 2s data from ATP and adenosine mono- and diphosphate (AMP and ADP, respectively) solutions, probing the electronic structure of the phosphate chain and the local environment of individual phosphate units in ATP. Our results provide a comprehensive view of the electronic structure of ATP and Mg-ATP complexes relevant to phosphorylation and dephosphorylation reactions that are central to bioenergetics in living organisms.
液体喷射光电子能谱(LJ-PES)允许直接探测水溶液中的电子结构。我们展示了该方法在复杂环境中生物分子的适用性,探索了在水相(ATP)与镁(Mg)相互作用中腺苷三磷酸(ATP)的特定位置信息,强调了同时分析光电子能谱不同区域所带来的协同作用。特别是,我们展示了分子间库仑衰变(ICD)光谱作为研究生物分子结构的新技术的有力补充。我们应用 LJ-PES 并结合电子结构计算来研究有和没有溶解的 Mg 的 ATP 溶液。价光电数据揭示了由于与二价阳离子相互作用,ATP 的磷酸盐和腺嘌呤特征的光谱变化。Mg 2p、Mg 2s、P 2p 和 P 2s 芯能级谱中随 Mg/ATP 浓度比的化学位移与 [Mg(ATP)]、[MgATP]和 [MgATP] 配合物的形成相关,证明了该技术对 Mg-磷酸盐相互作用的元素敏感性。ATP 和 Mg 之间的分子间相互作用的最直接探针是通过 Mg 1s 电子电离后出现的新兴 ICD 电子提供的。ICD 光谱被证明可以灵敏地探测 Mg-ATP 配位环境中的配体交换。此外,我们报告并比较了来自 ATP 和腺苷单磷酸(AMP)和二磷酸(ADP)溶液的 P 2s 数据,探测了磷酸盐链的电子结构和 ATP 中单个磷酸盐单元的局部环境。我们的结果提供了与生物体内生物能量学中磷酸化和去磷酸化反应相关的 ATP 和 Mg-ATP 配合物的电子结构的全面视图。