Suppr超能文献

利用深度学习量化脂肪浸润来评估功能性电刺激对神经损伤肌肉的影响。

Impact of functional electrical stimulation on nerve-damaged muscles by quantifying fat infiltration using deep learning.

机构信息

Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany.

Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany.

出版信息

Sci Rep. 2024 May 28;14(1):12158. doi: 10.1038/s41598-024-62805-6.

Abstract

Quantitative imaging in life sciences has evolved into a powerful approach combining advanced microscopy acquisition and automated analysis of image data. The focus of the present study is on the imaging-based evaluation of the posterior cricoarytenoid muscle (PCA) influenced by long-term functional electrical stimulation (FES), which may assist the inspiration of patients with bilateral vocal fold paresis. To this end, muscle cross-sections of the PCA of sheep were examined by quantitative image analysis. Previous investigations of the muscle fibers and the collagen amount have not revealed signs of atrophy and fibrosis due to FES by a laryngeal pacemaker. It was therefore hypothesized that regardless of the stimulation parameters the fat in the muscle cross-sections would not be significantly altered. We here extending our previous investigations using quantitative imaging of intramuscular fat in cross-sections. In order to perform this analysis both reliably and faster than a qualitative evaluation and time-consuming manual annotation, the selection of the automated method was of crucial importance. To this end, our recently established deep neural network IMFSegNet, which provides more accurate results compared to standard machine learning approaches, was applied to more than 300 H&E stained muscle cross-sections from 22 sheep. It was found that there were no significant differences in the amount of intramuscular fat between the PCA with and without long-term FES, nor were any significant differences found between the low and high duty cycle stimulated groups. This study on a human-like animal model not only confirms the hypothesis that FES with the selected parameters has no negative impact on the PCA, but also demonstrates that objective and automated deep learning-based quantitative imaging is a powerful tool for such a challenging analysis.

摘要

生命科学中的定量成像已经发展成为一种强大的方法,结合了先进的显微镜采集和图像数据的自动分析。本研究的重点是基于成像的评估长期功能性电刺激 (FES) 对环甲后肌 (PCA) 的影响,这可能有助于双侧声带麻痹患者的吸气。为此,通过定量图像分析检查了绵羊 PCA 的肌横断。以前的研究表明,由于喉起搏器的 FES,肌肉纤维和胶原量没有出现萎缩和纤维化的迹象。因此,假设无论刺激参数如何,肌肉横断面上的脂肪都不会发生明显变化。我们在这里扩展了我们以前使用肌肉内脂肪的定量成像的研究。为了进行这种分析,既可靠又比定性评估和耗时的手动注释更快,因此选择自动方法至关重要。为此,我们最近建立的深度神经网络 IMFSegNet 与标准机器学习方法相比提供了更准确的结果,应用于 22 只绵羊的 300 多个 H&E 染色肌肉横断。结果发现,长期 FES 前后 PCA 中的肌肉内脂肪量没有显著差异,低和高占空比刺激组之间也没有显著差异。这项在类似人类的动物模型上的研究不仅证实了选择的参数的 FES 对 PCA 没有负面影响的假设,还表明基于客观和自动深度学习的定量成像对于这种具有挑战性的分析是一种强大的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11db/11130129/03884190d1a5/41598_2024_62805_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验