Laboratory for Biosensors and Bioelectronics, ETH Zürich, Zurich, Switzerland.
Institute of Computing, Università della Svizzera Italiana, Lugano, Switzerland.
Nat Methods. 2024 Jun;21(6):1063-1073. doi: 10.1038/s41592-024-02277-8. Epub 2024 May 27.
The dynamics of cellular membrane tension and its role in mechanosensing, which is the ability of cells to respond to physical stimuli, remain incompletely understood, mainly due to the lack of appropriate tools. Here, we report a force-controlled nanopipette-based method that combines fluidic force microscopy with fluorescence imaging for precise manipulation of the cellular membrane tension while monitoring the impact on single-cell mechanosensitivity. The force-controlled nanopipette enables control of the indentation force imposed on the cell cortex as well as of the aspiration pressure applied to the plasma membrane. We show that this setup can be used to concurrently monitor the activation of Piezo1 mechanosensitive ion channels via calcium imaging. Moreover, the spatiotemporal behavior of the tension propagation is assessed with the fluorescent membrane tension probe Flipper-TR, and further dissected using molecular dynamics modeling. Finally, we demonstrate that aspiration and indentation act independently on the cellular mechanobiological machinery, that indentation induces a local pre-tension in the membrane, and that membrane tension stays confined by links to the cytoskeleton.
细胞膜张力的动力学及其在机械感知(即细胞对物理刺激做出反应的能力)中的作用仍不完全清楚,主要是因为缺乏适当的工具。在这里,我们报告了一种基于力控制的纳米移液器的方法,该方法结合了流体力显微镜和荧光成像,可精确控制细胞膜张力,同时监测其对单细胞机械敏感性的影响。力控制的纳米移液器可控制施加在细胞膜上的压痕力和施加在质膜上的抽吸压力。我们表明,该装置可用于通过钙成像同时监测 Piezo1 机械敏感离子通道的激活。此外,通过荧光膜张力探针 Flipper-TR 评估张力传播的时空行为,并使用分子动力学建模进一步剖析。最后,我们证明抽吸和压痕独立作用于细胞的机械生物学机制,压痕会导致膜产生局部预张力,并且张力通过与细胞骨架的连接而受到限制。