Suppr超能文献

化学信息学回归方法及其适用域。

Chemoinformatic regression methods and their applicability domain.

机构信息

Institute of Medicinal and Pharmaceutical Chemistry, University of Technology Braunschweig, 38106, Braunschweig, Germany.

出版信息

Mol Inform. 2024 Jul;43(7):e202400018. doi: 10.1002/minf.202400018. Epub 2024 May 28.

Abstract

The growing interest in chemoinformatic model uncertainty calls for a summary of the most widely used regression techniques and how to estimate their reliability. Regression models learn a mapping from the space of explanatory variables to the space of continuous output values. Among other limitations, the predictive performance of the model is restricted by the training data used for model fitting. Identification of unusual objects by outlier detection methods can improve model performance. Additionally, proper model evaluation necessitates defining the limitations of the model, often called the applicability domain. Comparable to certain classifiers, some regression techniques come with built-in methods or augmentations to quantify their (un)certainty, while others rely on generic procedures. The theoretical background of their working principles and how to deduce specific and general definitions for their domain of applicability shall be explained.

摘要

化学信息学模型不确定性日益受到关注,因此需要总结最广泛使用的回归技术以及如何估计它们的可靠性。回归模型从解释变量的空间学习到连续输出值的空间的映射。除了其他限制之外,模型的预测性能还受到用于模型拟合的训练数据的限制。通过异常值检测方法识别异常对象可以提高模型性能。此外,适当的模型评估需要定义模型的限制,通常称为适用性域。与某些分类器类似,一些回归技术具有内置的方法或增强功能来量化它们的(不)确定性,而其他技术则依赖于通用程序。本文将解释其工作原理的理论背景以及如何推导出它们的适用性域的具体和一般定义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验