Suppr超能文献

使用来自myCOPD应用程序的真实世界数据进行加重预测建模。

Exacerbation predictive modelling using real-world data from the myCOPD app.

作者信息

Glyde Henry M G, Blythin Alison M, Wilkinson Tom M A, Nabney Ian T, Dodd James W

机构信息

EPSRC Centre for Doctoral Training in Digital Health and Care, University of Bristol, Bristol, UK.

My mHealth, Bournemouth, UK.

出版信息

Heliyon. 2024 May 14;10(10):e31201. doi: 10.1016/j.heliyon.2024.e31201. eCollection 2024 May 30.

Abstract

BACKGROUND

Acute exacerbations of COPD (AECOPD) are episodes of breathlessness, cough and sputum which are associated with the risk of hospitalisation, progressive lung function decline and death. They are often missed or diagnosed late. Accurate timely intervention can improve these poor outcomes. Digital tools can be used to capture symptoms and other clinical data in COPD. This study aims to apply machine learning to the largest available real-world digital dataset to develop AECOPD Prediction tools which could be used to support early intervention and improve clinical outcomes.

OBJECTIVE

To create and validate a machine learning predictive model that forecasts exacerbations of COPD 1-8 days in advance. The model is based on routine patient-entered data from myCOPD self-management app.

METHOD

Adaptations of the AdaBoost algorithm were employed as machine learning approaches. The dataset included 506 patients users between 2017 and 2021. 55,066 app records were available for stable COPD event labels and 1263 records of AECOPD event labels. The data used for training the model included COPD assessment test (CAT) scores, symptom scores, smoking history, and previous exacerbation frequency. All exacerbation records used in the model were confined to the 1-8 days preceding a self-reported exacerbation event.

RESULTS

TheEasyEnsemble Classifier resulted in a Sensitivity of 67.0 % and a Specificity of 65 % with a positive predictive value (PPV) of 5.0 % and a negative predictive value (NPV) of 98.9 %. An AdaBoost model with a cost-sensitive decision tree resulted in a a Sensitivity of 35.0 % and a Specificity of 89.0 % with a PPV of 7.08 % and NPV of 98.3 %.

CONCLUSION

This preliminary analysis demonstrates that machine learning approaches to real-world data from a widely deployed digital therapeutic has the potential to predict AECOPD and can be used to confidently exclude the risk of exacerbations of COPD within the next 8 days.

摘要

背景

慢性阻塞性肺疾病急性加重(AECOPD)表现为气短、咳嗽和咳痰发作,与住院风险、肺功能进行性下降及死亡相关。这些症状常被漏诊或诊断较晚。准确及时的干预可改善这些不良结局。数字工具可用于收集慢性阻塞性肺疾病的症状及其他临床数据。本研究旨在将机器学习应用于最大的可用真实世界数字数据集,以开发AECOPD预测工具,用于支持早期干预并改善临床结局。

目的

创建并验证一个机器学习预测模型,提前1 - 8天预测慢性阻塞性肺疾病急性加重。该模型基于来自myCOPD自我管理应用程序中患者常规输入的数据。

方法

采用自适应增强(AdaBoost)算法的变体作为机器学习方法。数据集包括2017年至2021年间的506名患者用户。有55066条应用程序记录用于稳定慢性阻塞性肺疾病事件标签,1263条AECOPD事件标签记录。用于训练模型的数据包括慢性阻塞性肺疾病评估测试(CAT)评分、症状评分、吸烟史和既往急性加重频率。模型中使用的所有急性加重记录均限于自我报告的急性加重事件前1 - 8天。

结果

易集成分类器的灵敏度为67.0%,特异度为65%,阳性预测值(PPV)为5.0%,阴性预测值(NPV)为98.9%。带有成本敏感决策树的AdaBoost模型的灵敏度为35.0%,特异度为89.0%,PPV为7.08%,NPV为98.3%。

结论

该初步分析表明,对来自广泛应用的数字疗法的真实世界数据采用机器学习方法有预测AECOPD的潜力,且可用于可靠地排除未来8天内慢性阻塞性肺疾病急性加重的风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efd8/11128912/e05c2659c59f/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验