Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
PLoS Comput Biol. 2024 May 28;20(5):e1012137. doi: 10.1371/journal.pcbi.1012137. eCollection 2024 May.
Lecithin:cholesterol acyltransferase (LCAT) exhibits α-activity on high-density and β-activity on low-density lipoproteins. However, the molecular determinants governing LCAT activation by different apolipoproteins remain elusive. Uncovering these determinants would offer the opportunity to design and explore advanced therapies against dyslipidemias. Here, we have conducted coarse-grained and all-atom molecular dynamics simulations of LCAT with nanodiscs made with α-helical amphiphilic peptides either derived from apolipoproteins A1 and E (apoA1 and apoE) or apoA1 mimetic peptide 22A that was optimized to activate LCAT. This study aims to explore what drives the binding of peptides to our previously identified interaction site in LCAT. We hypothesized that this approach could be used to screen for binding sites of LCAT in different apolipoproteins and would provide insights to differently localized LCAT activities. Our screening approach was able to discriminate apoA1 helixes 4, 6, and 7 as key contributors to the interaction with LCAT supporting the previous research data. The simulations provided detailed molecular determinants driving the interaction with LCAT: the formation of hydrogen bonds or salt bridges between peptides E4 or D4 and LCAT S236 or K238 residues. Additionally, salt bridging between R7 and D73 was observed, depending on the availability of R7. Expanding our investigation to diverse plasma proteins, we detected novel LCAT binding helixes in apoL1, apoB100, and serum amyloid A. Our findings suggest that the same binding determinants, involving E4 or D4 -S236 and R7-D73 interactions, influence LCAT β-activity on low-density lipoproteins, where apoE and or apoB100 are hypothesized to interact with LCAT.
卵磷脂胆固醇酰基转移酶 (LCAT) 在高密度脂蛋白上表现出 α-活性,在低密度脂蛋白上表现出 β-活性。然而,控制不同载脂蛋白激活 LCAT 的分子决定因素仍不清楚。揭示这些决定因素将为设计和探索针对血脂异常的先进治疗方法提供机会。在这里,我们使用源自载脂蛋白 A1 和 E(apoA1 和 apoE)或经过优化以激活 LCAT 的 apoA1 模拟肽 22A 的 α-螺旋两亲肽制成的纳米盘对 LCAT 进行了粗粒化和全原子分子动力学模拟。本研究旨在探索是什么驱动肽与我们之前在 LCAT 中识别的相互作用位点结合。我们假设这种方法可用于筛选不同载脂蛋白中 LCAT 的结合位点,并为不同定位的 LCAT 活性提供见解。我们的筛选方法能够区分 apoA1 螺旋 4、6 和 7 是与 LCAT 相互作用的关键贡献者,这支持了先前的研究数据。模拟提供了驱动与 LCAT 相互作用的详细分子决定因素:肽 E4 或 D4 与 LCAT S236 或 K238 残基之间形成氢键或盐桥。此外,观察到 R7 和 D73 之间形成盐桥,这取决于 R7 的可用性。将我们的研究扩展到不同的血浆蛋白,我们在 apoL1、apoB100 和血清淀粉样蛋白 A 中检测到新的 LCAT 结合螺旋。我们的研究结果表明,相同的结合决定因素,涉及 E4 或 D4-S236 和 R7-D73 相互作用,影响 LCAT 在低密度脂蛋白上的 β-活性,其中推测 apoE 和或 apoB100 与 LCAT 相互作用。