Suppr超能文献

用于组织病理学图像中多示例学习的多尺度关系图卷积网络。

Multi-scale relational graph convolutional network for multiple instance learning in histopathology images.

机构信息

Electrical and Computer Engineering, University of British Columbia, 2332 Main Mall, Vancouver, BC V6T 1Z4, Canada.

The Vancouver Prostate Centre, 2660 Oak St, Vancouver, BC V6H 3Z6, Canada; Department of Urologic Sciences, University of British Columbia, 2775 Laurel Street, Vancouver, BC V5Z 1M9, Canada.

出版信息

Med Image Anal. 2024 Aug;96:103197. doi: 10.1016/j.media.2024.103197. Epub 2024 May 6.

Abstract

Graph convolutional neural networks have shown significant potential in natural and histopathology images. However, their use has only been studied in a single magnification or multi-magnification with either homogeneous graphs or only different node types. In order to leverage the multi-magnification information and improve message passing with graph convolutional networks, we handle different embedding spaces at each magnification by introducing the Multi-Scale Relational Graph Convolutional Network (MS-RGCN) as a multiple instance learning method. We model histopathology image patches and their relation with neighboring patches and patches at other scales (i.e., magnifications) as a graph. We define separate message-passing neural networks based on node and edge types to pass the information between different magnification embedding spaces. We experiment on prostate cancer histopathology images to predict the grade groups based on the extracted features from patches. We also compare our MS-RGCN with multiple state-of-the-art methods with evaluations on several source and held-out datasets. Our method outperforms the state-of-the-art on all of the datasets and image types consisting of tissue microarrays, whole-mount slide regions, and whole-slide images. Through an ablation study, we test and show the value of the pertinent design features of the MS-RGCN.

摘要

图卷积神经网络在自然和组织病理学图像中显示出了巨大的潜力。然而,它们的使用仅在单一放大倍数或多放大倍数下进行了研究,要么是同构图,要么只有不同的节点类型。为了利用多放大倍数信息并通过图卷积网络改进消息传递,我们通过引入多尺度关系图卷积网络(MS-RGCN)作为一种多实例学习方法,在每个放大倍数上处理不同的嵌入空间。我们将组织病理学图像补丁及其与相邻补丁和其他放大倍数(即放大倍数)的补丁之间的关系建模为一个图。我们根据节点和边类型定义单独的消息传递神经网络,以在不同的放大倍数嵌入空间之间传递信息。我们在前列腺癌组织病理学图像上进行实验,根据从补丁中提取的特征预测等级组。我们还将我们的 MS-RGCN 与多个最先进的方法进行了比较,并在几个源数据集和保留数据集上进行了评估。我们的方法在所有数据集和图像类型上都优于最先进的方法,这些图像类型包括组织微阵列、全载玻片区域和全玻片图像。通过一项消融研究,我们测试并展示了 MS-RGCN 的相关设计特征的价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验