College of Mathematics and Computer Science, Yan'an University, Yan'an 716000, China.
Medical College of Yan'an University, Yan'an University, Yan'an 716000, China.
Bioinformatics. 2024 Jun 3;40(6). doi: 10.1093/bioinformatics/btae347.
Identifying drug-target interactions (DTI) is crucial in drug discovery. Fragments are less complex and can accurately characterize local features, which is important in DTI prediction. Recently, deep learning (DL)-based methods predict DTI more efficiently. However, two challenges remain in existing DL-based methods: (i) some methods directly encode drugs and proteins into integers, ignoring the substructure representation; (ii) some methods learn the features of the drugs and proteins separately instead of considering their interactions.
In this article, we propose a fragment-oriented method based on a multihead cross attention mechanism for predicting DTI, named FMCA-DTI. FMCA-DTI obtains multiple types of fragments of drugs and proteins by branch chain mining and category fragment mining. Importantly, FMCA-DTI utilizes the shared-weight-based multihead cross attention mechanism to learn the complex interaction features between different fragments. Experiments on three benchmark datasets show that FMCA-DTI achieves significantly improved performance by comparing it with four state-of-the-art baselines.
The code for this workflow is available at: https://github.com/jacky102022/FMCA-DTI.
识别药物-靶标相互作用(DTI)是药物发现的关键。片段复杂度较低,可以准确地描述局部特征,这对于 DTI 预测很重要。最近,基于深度学习(DL)的方法可以更有效地预测 DTI。然而,现有的基于 DL 的方法仍然存在两个挑战:(i)一些方法直接将药物和蛋白质编码为整数,忽略了亚结构表示;(ii)一些方法分别学习药物和蛋白质的特征,而不是考虑它们的相互作用。
在本文中,我们提出了一种基于多头交叉注意机制的面向片段的方法,用于预测 DTI,称为 FMCA-DTI。FMCA-DTI 通过分支链挖掘和类别片段挖掘获得药物和蛋白质的多种类型片段。重要的是,FMCA-DTI 利用基于共享权重的多头交叉注意机制来学习不同片段之间的复杂相互作用特征。在三个基准数据集上的实验表明,与四个最先进的基线相比,FMCA-DTI 具有显著提高的性能。
此工作流程的代码可在以下网址获得:https://github.com/jacky102022/FMCA-DTI。