Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China.
Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
Nat Commun. 2024 May 29;15(1):4583. doi: 10.1038/s41467-024-48869-y.
Molecular computing is an emerging paradigm that plays an essential role in data storage, bio-computation, and clinical diagnosis with the future trends of more efficient computing scheme, higher modularity with scaled-up circuity and stronger tolerance of corrupted inputs in a complex environment. Towards these goals, we construct a spatially localized, DNA integrated circuits-based classifier (DNA IC-CLA) that can perform neuromorphic architecture-based computation at a molecular level for medical diagnosis. The DNA-based classifier employs a two-dimensional DNA origami as the framework and localized processing modules as the in-frame computing core to execute arithmetic operations (e.g. multiplication, addition, subtraction) for efficient linear classification of complex patterns of miRNA inputs. We demonstrate that the DNA IC-CLA enables accurate cancer diagnosis in a faster (about 3 h) and more effective manner in synthetic and clinical samples compared to those of the traditional freely diffusible DNA circuits. We believe that this all-in-one DNA-based classifier can exhibit more applications in biocomputing in cells and medical diagnostics.
分子计算是一种新兴的范例,在数据存储、生物计算和临床诊断方面发挥着重要作用,具有未来更高效的计算方案、更高的模块性、更大规模的电路以及在复杂环境中对损坏输入更强的容忍度等发展趋势。为了实现这些目标,我们构建了一个基于空间定位的、集成 DNA 的分类器(DNA IC-CLA),可在分子水平上执行基于神经形态架构的计算,用于医疗诊断。基于 DNA 的分类器采用二维 DNA 折纸作为框架和本地化处理模块作为帧内计算核心,执行算术运算(例如乘法、加法、减法),从而有效地对 miRNA 输入的复杂模式进行线性分类。我们证明,与传统的自由扩散 DNA 电路相比,DNA IC-CLA 能够在合成和临床样本中以更快(约 3 小时)和更有效的方式实现更准确的癌症诊断。我们相信,这种一体化的基于 DNA 的分类器可以在细胞内的生物计算和医学诊断中展现出更多的应用。