Suppr超能文献

基于范德华力的二维互补逻辑 3D 集成的极性工程。

Van der Waals polarity-engineered 3D integration of 2D complementary logic.

机构信息

Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China.

School of Materials Science and Engineering, University of Science and Technology of China, Anhui, China.

出版信息

Nature. 2024 Jun;630(8016):346-352. doi: 10.1038/s41586-024-07438-5. Epub 2024 May 29.

Abstract

Vertical three-dimensional integration of two-dimensional (2D) semiconductors holds great promise, as it offers the possibility to scale up logic layers in the z axis. Indeed, vertical complementary field-effect transistors (CFETs) built with such mixed-dimensional heterostructures, as well as hetero-2D layers with different carrier types, have been demonstrated recently. However, so far, the lack of a controllable doping scheme (especially p-doped WSe (refs. ) and MoS (refs. )) in 2D semiconductors, preferably in a stable and non-destructive manner, has greatly impeded the bottom-up scaling of complementary logic circuitries. Here we show that, by bringing transition metal dichalcogenides, such as MoS, atop a van der Waals (vdW) antiferromagnetic insulator chromium oxychloride (CrOCl), the carrier polarity in MoS can be readily reconfigured from n- to p-type via strong vdW interfacial coupling. The consequential band alignment yields transistors with room-temperature hole mobilities up to approximately 425 cm V s, on/off ratios reaching 10 and air-stable performance for over one year. Based on this approach, vertically constructed complementary logic, including inverters with 6 vdW layers, NANDs with 14 vdW layers and SRAMs with 14 vdW layers, are further demonstrated. Our findings of polarity-engineered p- and n-type 2D semiconductor channels with and without vdW intercalation are robust and universal to various materials and thus may throw light on future three-dimensional vertically integrated circuits based on 2D logic gates.

摘要

二维(2D)半导体的垂直三维集成具有很大的潜力,因为它提供了在 z 轴上扩展逻辑层的可能性。事实上,最近已经展示了使用这种混合维度异质结构以及具有不同载流子类型的异质 2D 层构建的垂直互补场效应晶体管(CFET)。然而,到目前为止,2D 半导体中缺乏一种可控制的掺杂方案(特别是 p 型掺杂的 WSe(参考文献)和 MoS(参考文献)),最好是采用稳定且非破坏性的方式,这极大地阻碍了互补逻辑电路的自下而上扩展。在这里,我们展示了通过将过渡金属二卤化物(如 MoS)置于范德华(vdW)反铁磁绝缘体氯化铬(CrOCl)之上,可以通过强 vdW 界面耦合,很容易将 MoS 中的载流子极性从 n 型重新配置为 p 型。由此产生的能带排列使得晶体管在室温下的空穴迁移率高达约 425 cm V s,开关比达到 10,并且在超过一年的时间内具有空气稳定的性能。基于这种方法,进一步演示了垂直构建的互补逻辑,包括具有 6 个 vdW 层的反相器、具有 14 个 vdW 层的 NAND 和具有 14 个 vdW 层的 SRAM。我们对具有和不具有 vdW 夹层的极性工程 p 型和 n 型 2D 半导体沟道的研究结果是稳健且普遍适用于各种材料的,因此可能为未来基于 2D 逻辑门的三维垂直集成电路提供启示。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8704/11168927/a44216f0e8f8/41586_2024_7438_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验