Hamilton Alisa, Haghpanah Fardad, Tulchinsky Alexander, Kipshidze Nodar, Poleon Suprena, Lin Gary, Du Hongru, Gardner Lauren, Klein Eili
One Health Trust, 5636 Connecticut Avenue NW, PO Box 4235, Washington, DC 20015, USA.
Department of Civil & Systems Engineering, Johns Hopkins University, 3400 North Charles St, Baltimore, MD 21218, USA.
Dialogues Health. 2024 May 7;4:100179. doi: 10.1016/j.dialog.2024.100179. eCollection 2024 Jun.
During the COVID-19 pandemic there was a plethora of dynamical forecasting models created, but their ability to effectively describe future trajectories of disease was mixed. A major challenge in evaluating future case trends was forecasting the behavior of individuals. When behavior was incorporated into models, it was primarily incorporated exogenously (e.g., fitting to cellphone mobility data). Fewer models incorporated behavior endogenously (e.g., dynamically changing a model parameter throughout the simulation).
This review aimed to qualitatively characterize models that included an adaptive (endogenous) behavioral element in the context of COVID-19 transmission. We categorized studies into three approaches: 1) feedback loops, 2) game theory/utility theory, and 3) information/opinion spread.
Of the 92 included studies, 72% employed a feedback loop, 27% used game/utility theory, and 9% used a model if information/opinion spread. Among all studies, 89% used a compartmental model alone or in combination with other model types. Similarly, 15% used a network model, 11% used an agent-based model, 7% used a system dynamics model, and 1% used a Markov chain model. Descriptors of behavior change included mask-wearing, social distancing, vaccination, and others. Sixty-eight percent of studies calibrated their model to observed data and 25% compared simulated forecasts to observed data. Forty-one percent of studies compared versions of their model with and without endogenous behavior. Models with endogenous behavior tended to show a smaller and delayed initial peak with subsequent periodic waves.
While many COVID-19 models incorporated behavior exogenously, these approaches may fail to capture future adaptations in human behavior, resulting in under- or overestimates of disease burden. By incorporating behavior endogenously, the next generation of infectious disease models could more effectively predict outcomes so that decision makers can better prepare for and respond to epidemics.
This study was funded in-part by Centers for Disease Control and Prevention (CDC) (1U01CK000536), the National Science Foundation (NSF) grant (2229996), and the NSF grant (2200256).
在新冠疫情期间,人们创建了大量动态预测模型,但其有效描述疾病未来发展轨迹的能力参差不齐。评估未来病例趋势的一个主要挑战是预测个体行为。当行为被纳入模型时,主要是以外生方式纳入(例如,拟合手机移动数据)。较少有模型以内生方式纳入行为(例如,在整个模拟过程中动态改变模型参数)。
本综述旨在定性描述在新冠病毒传播背景下包含适应性(内生)行为要素的模型。我们将研究分为三种方法:1)反馈回路,2)博弈论/效用理论,3)信息/观点传播。
在纳入的92项研究中,72%采用了反馈回路,27%使用了博弈/效用理论,9%使用了信息/观点传播模型。在所有研究中,89%单独使用了 compartmental 模型或与其他模型类型结合使用。同样,15%使用了网络模型,11%使用了基于主体的模型,7%使用了系统动力学模型,1%使用了马尔可夫链模型。行为变化的描述包括戴口罩、保持社交距离、接种疫苗等。68%的研究将其模型校准到观测数据,25%将模拟预测与观测数据进行比较。41%的研究比较了有无内生行为的模型版本。具有内生行为的模型往往显示出较小且延迟的初始峰值以及随后的周期性波动。
虽然许多新冠模型以外生方式纳入了行为,但这些方法可能无法捕捉人类行为未来的适应性变化,从而导致对疾病负担的低估或高估。通过内生地纳入行为,下一代传染病模型可以更有效地预测结果,以便决策者能够更好地为疫情做准备并做出应对。
本研究部分由疾病控制与预防中心(CDC)资助(1U01CK000536)、美国国家科学基金会(NSF)资助(2229996)以及NSF资助(2200256)。