Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, 677 Huntington Ave., Boston, Massachusetts, 02115, USA.
Department of Neurology, Mayo Clinic, 13400 E. Shea Blvd., Scottsdale, Arizona, 85259, USA.
Ann Clin Transl Neurol. 2024 Jun;11(6):1380-1392. doi: 10.1002/acn3.52050. Epub 2024 May 30.
Passively collected smartphone sensor data provide an opportunity to study physical activity and mobility unobtrusively over long periods of time and may enable disease monitoring in people with amyotrophic lateral sclerosis (PALS).
We enrolled 63 PALS who used Beiwe mobile application that collected their smartphone accelerometer and GPS data and administered the self-entry ALS Functional Rating Scale-Revised (ALSFRS-RSE) survey. We identified individual steps from accelerometer data and used the Activity Index to summarize activity at the minute level. Walking, Activity Index, and GPS outcomes were then aggregated into day-level measures. We used linear mixed effect models (LMMs) to estimate baseline and monthly change for ALSFRS-RSE scores (total score, subscores Q1-3, Q4-6, Q7-9, Q10-12) and smartphone sensor data measures, as well as the associations between them.
The analytic sample (N = 45) was 64.4% male with a mean age of 60.1 years. The mean observation period was 292.3 days. The ALSFRS-RSE total score baseline mean was 35.8 and had a monthly rate of decline of -0.48 (p-value <0.001). We observed statistically significant change over time and association with ALSFRS-RSE total score for four smartphone sensor data-derived measures: walking cadence from top 1 min and log-transformed step count, step count from top 1 min, and Activity Index from top 1 min.
Smartphone sensors can unobtrusively track physical changes in PALS, potentially aiding disease monitoring and future research.
被动采集的智能手机传感器数据为长时间非侵入性地研究身体活动和移动性提供了机会,并可能使肌萎缩侧索硬化症(ALS)患者的疾病监测成为可能。
我们招募了 63 名使用 Beiwe 移动应用程序的 ALS 患者,该应用程序收集了他们智能手机的加速度计和 GPS 数据,并管理了自我输入的肌萎缩侧索硬化功能评定量表修订版(ALSFRS-RSE)调查。我们从加速度计数据中识别出个体步骤,并使用活动指数在分钟水平上总结活动。然后,将行走、活动指数和 GPS 结果汇总为日水平测量。我们使用线性混合效应模型(LMMs)来估计 ALSFRS-RSE 评分(总分、子评分 Q1-3、Q4-6、Q7-9、Q10-12)和智能手机传感器数据测量的基线和每月变化,以及它们之间的关联。
分析样本(N=45)中 64.4%为男性,平均年龄为 60.1 岁。平均观察期为 292.3 天。ALSFRS-RSE 总分的基线平均值为 35.8,每月下降率为-0.48(p 值<0.001)。我们观察到四个智能手机传感器数据衍生测量值与 ALSFRS-RSE 总分随时间的显著变化和关联:来自前 1 分钟的最高步频和对数转换的步数、前 1 分钟的步数以及前 1 分钟的活动指数。
智能手机传感器可以非侵入性地跟踪 ALS 患者的身体变化,可能有助于疾病监测和未来的研究。