Centro de Investigación Príncipe Felipe, Calle de Eduardo Primo Yúfera, 3, 46012, Valencia, Spain.
Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK.
Cell Mol Life Sci. 2024 May 31;81(1):246. doi: 10.1007/s00018-024-05284-2.
The glycosylphosphatidylinositol (GPI) biosynthetic pathway in the endoplasmic reticulum (ER) is crucial for generating GPI-anchored proteins (GPI-APs), which are translocated to the cell surface and play a vital role in cell signaling and adhesion. This study focuses on two integral components of the GPI pathway, the PIGL and PIGF proteins, and their significance in trophoblast biology. We show that GPI pathway mutations impact on placental development impairing the differentiation of the syncytiotrophoblast (SynT), and especially the SynT-II layer, which is essential for the establishment of the definitive nutrient exchange area within the placental labyrinth. CRISPR/Cas9 knockout of Pigl and Pigf in mouse trophoblast stem cells (mTSCs) confirms the role of these GPI enzymes in syncytiotrophoblast differentiation. Mechanistically, impaired GPI-AP generation induces an excessive unfolded protein response (UPR) in the ER in mTSCs growing in stem cell conditions, akin to what is observed in human preeclampsia. Upon differentiation, the impairment of the GPI pathway hinders the induction of WNT signaling for early SynT-II development. Remarkably, the transcriptomic profile of Pigl- and Pigf-deficient cells separates human patient placental samples into preeclampsia and control groups, suggesting an involvement of Pigl and Pigf in establishing a preeclamptic gene signature. Our study unveils the pivotal role of GPI biosynthesis in early placentation and uncovers a new preeclampsia gene expression profile associated with mutations in the GPI biosynthesis pathway, providing novel molecular insights into placental development with implications for enhanced patient stratification and timely interventions.
糖基磷脂酰肌醇(GPI)生物合成途径在内质网(ER)中对于生成 GPI 锚定蛋白(GPI-AP)至关重要,这些蛋白被转运到细胞表面,在细胞信号转导和黏附中发挥着重要作用。本研究聚焦于 GPI 途径的两个完整组成部分,即 PIGL 和 PIGF 蛋白,以及它们在滋养层生物学中的意义。我们表明,GPI 途径突变会影响胎盘发育,损害合胞体滋养层(SynT)的分化,特别是 SynT-II 层的分化,这对于在胎盘绒毛内建立明确的营养交换区域是必不可少的。CRISPR/Cas9 敲除小鼠滋养层干细胞(mTSCs)中的 Pigl 和 Pigf 证实了这些 GPI 酶在合胞体滋养层分化中的作用。从机制上讲,在干细胞条件下生长的 mTSCs 中,GPI-AP 生成受损会诱导内质网中过度未折叠蛋白反应(UPR),类似于在人类子痫前期中观察到的情况。在分化过程中,GPI 途径的损伤会阻碍 WNT 信号的诱导,从而阻碍早期 SynT-II 的发育。值得注意的是,Pigl 和 Pigf 缺陷细胞的转录组谱将人类患者胎盘样本分为子痫前期和对照组,表明 Pigl 和 Pigf 参与建立子痫前期基因特征。我们的研究揭示了 GPI 生物合成在早期胎盘形成中的关键作用,并揭示了与 GPI 生物合成途径突变相关的新的子痫前期基因表达谱,为胎盘发育提供了新的分子见解,对增强患者分层和及时干预具有重要意义。