Sánchez-Ruiz María Isabel, Santillana Elena, Linde Dolores, Romero Antonio, Martínez Angel T, Ruiz-Dueñas Francisco Javier
Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain.
Biotechnol Biofuels Bioprod. 2024 Jun 1;17(1):74. doi: 10.1186/s13068-024-02517-1.
Manganese peroxidases (MnPs) are, together with lignin peroxidases and versatile peroxidases, key elements of the enzymatic machineries secreted by white-rot fungi to degrade lignin, thus providing access to cellulose and hemicellulose in plant cell walls. A recent genomic analysis of 52 Agaricomycetes species revealed the existence of novel MnP subfamilies differing in the amino-acid residues that constitute the manganese oxidation site. Following this in silico analysis, a comprehensive structure-function study is needed to understand how these enzymes work and contribute to transform the lignin macromolecule.
Two MnPs belonging to the subfamilies recently classified as MnP-DGD and MnP-ESD-referred to as Ape-MnP1 and Cst-MnP1, respectively-were identified as the primary peroxidases secreted by the Agaricales species Agrocybe pediades and Cyathus striatus when growing on lignocellulosic substrates. Following heterologous expression and in vitro activation, their biochemical characterization confirmed that these enzymes are active MnPs. However, crystal structure and mutagenesis studies revealed manganese coordination spheres different from those expected after their initial classification. Specifically, a glutamine residue (Gln333) in the C-terminal tail of Ape-MnP1 was found to be involved in manganese binding, along with Asp35 and Asp177, while Cst-MnP1 counts only two amino acids (Glu36 and Asp176), instead of three, to function as a MnP. These findings led to the renaming of these subfamilies as MnP-DDQ and MnP-ED and to re-evaluate their evolutionary origin. Both enzymes were also able to directly oxidize lignin-derived phenolic compounds, as seen for other short MnPs. Importantly, size-exclusion chromatography analyses showed that both enzymes cause changes in polymeric lignin in the presence of manganese, suggesting their relevance in lignocellulose transformation.
Understanding the mechanisms used by basidiomycetes to degrade lignin is of particular relevance to comprehend carbon cycle in nature and to design biotechnological tools for the industrial use of plant biomass. Here, we provide the first structure-function characterization of two novel MnP subfamilies present in Agaricales mushrooms, elucidating the main residues involved in catalysis and demonstrating their ability to modify the lignin macromolecule.
锰过氧化物酶(MnP)与木质素过氧化物酶和多功能过氧化物酶一起,是白腐真菌分泌的用于降解木质素的酶系的关键成分,从而使植物细胞壁中的纤维素和半纤维素得以利用。最近对52种伞菌纲物种的基因组分析揭示了新型MnP亚家族的存在,这些亚家族在构成锰氧化位点的氨基酸残基上存在差异。在进行了这项计算机模拟分析之后,需要进行全面的结构-功能研究,以了解这些酶如何发挥作用并有助于转化木质素大分子。
属于最近分类为MnP-DGD和MnP-ESD的亚家族的两种MnP(分别称为Ape-MnP1和Cst-MnP1)被确定为伞菌目物种草地小皮伞和条纹黑蛋巢菌在木质纤维素底物上生长时分泌的主要过氧化物酶。经过异源表达和体外激活后,它们的生化特性证实这些酶是有活性的MnP。然而,晶体结构和诱变研究揭示了与它们最初分类后预期不同的锰配位球。具体而言,发现Ape-MnP1 C末端尾巴中的谷氨酰胺残基(Gln333)与Asp35和Asp177一起参与锰结合,而Cst-MnP1仅含有两个氨基酸(Glu36和Asp176),而非三个氨基酸来发挥MnP的功能。这些发现导致将这些亚家族重新命名为MnP-DDQ和MnP-ED,并重新评估它们的进化起源。与其他短MnP一样,这两种酶也能够直接氧化木质素衍生的酚类化合物。重要的是,尺寸排阻色谱分析表明,这两种酶在存在锰的情况下都会导致聚合木质素发生变化,表明它们在木质纤维素转化中的相关性。
了解担子菌降解木质素的机制对于理解自然界中的碳循环以及设计用于植物生物质工业用途的生物技术工具尤为重要。在此,我们首次对伞菌目蘑菇中存在的两个新型MnP亚家族进行了结构-功能表征,阐明了参与催化的主要残基,并证明了它们修饰木质素大分子的能力。