Suppr超能文献

利用延迟微分分析解码想象中的言语。

Decoding imagined speech with delay differential analysis.

作者信息

Carvalho Vinícius Rezende, Mendes Eduardo Mazoni Andrade Marçal, Fallah Aria, Sejnowski Terrence J, Comstock Lindy, Lainscsek Claudia

机构信息

RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway.

Postgraduate Program in Electrical Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.

出版信息

Front Hum Neurosci. 2024 May 17;18:1398065. doi: 10.3389/fnhum.2024.1398065. eCollection 2024.

Abstract

Speech decoding from non-invasive EEG signals can achieve relatively high accuracy (70-80%) for strictly delimited classification tasks, but for more complex tasks non-invasive speech decoding typically yields a 20-50% classification accuracy. However, decoder generalization, or how well algorithms perform objectively across datasets, is complicated by the small size and heterogeneity of existing EEG datasets. Furthermore, the limited availability of open access code hampers a comparison between methods. This study explores the application of a novel non-linear method for signal processing, delay differential analysis (DDA), to speech decoding. We provide a systematic evaluation of its performance on two public imagined speech decoding datasets relative to all publicly available deep learning methods. The results support DDA as a compelling alternative or complementary approach to deep learning methods for speech decoding. DDA is a fast and efficient time-domain open-source method that fits data using only few strong features and does not require extensive preprocessing.

摘要

对于严格限定的分类任务,从无创脑电图(EEG)信号中进行语音解码可以达到相对较高的准确率(70 - 80%),但对于更复杂的任务,无创语音解码通常产生20 - 50%的分类准确率。然而,解码器的泛化能力,即算法在不同数据集上的客观表现如何,因现有EEG数据集的规模小和异质性而变得复杂。此外,开放获取代码的可用性有限阻碍了方法之间的比较。本研究探索一种用于信号处理的新型非线性方法——延迟微分分析(DDA)在语音解码中的应用。我们相对于所有公开可用的深度学习方法,系统评估了其在两个公开的想象语音解码数据集上的性能。结果支持DDA作为深度学习方法在语音解码方面的一种有吸引力的替代或补充方法。DDA是一种快速高效的时域开源方法,仅使用少量强特征拟合数据,且不需要广泛的预处理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f32e/11140152/7be000b69da1/fnhum-18-1398065-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验