Suppr超能文献

上肢截肢者的替代肌肉协同模式。

Alternative muscle synergy patterns of upper limb amputees.

作者信息

Wang Xiaojun, Wang Junlin, Fei Ningbo, Duanmu Dehao, Feng Beibei, Li Xiaodong, Ip Wing-Yuk, Hu Yong

机构信息

Department of Orthopedics and Traumatology, LKS Faculty of Medicine, The University of Hong Kong, 999077 Hong Kong, China.

Orthopedics Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518000 China.

出版信息

Cogn Neurodyn. 2024 Jun;18(3):1119-1133. doi: 10.1007/s11571-023-09969-5. Epub 2023 Apr 26.

Abstract

Myoelectric hand prostheses are effective tools for upper limb amputees to regain hand functions. Much progress has been made with pattern recognition algorithms to recognize surface electromyography (sEMG) patterns, but few attentions was placed on the amputees' motor learning process. Many potential myoelectric prostheses users could not fully master the control or had declined performance over time. It is possible that learning to produce distinct and consistent muscle activation patterns with the residual limb could help amputees better control the myoelectric prosthesis. In this study, we observed longitudinal effect of motor skill learning with 2 amputees who have developed alternative muscle activation patterns in response to the same set of target prosthetic actions. During a 10-week program, amputee participants were trained to produce distinct and constant muscle activations with visual feedback of live sEMG and without interaction with prosthesis. At the end, their sEMG patterns were different from each other and from non-amputee control groups. For certain intended hand motion, gradually reducing root mean square (RMS) variance was observed. The learning effect was also assessed with a CNN-LSTM mixture classifier designed for mobile sEMG pattern recognition. The classification accuracy had a rising trend over time, implicating potential performance improvement of myoelectric prosthesis control. A follow-up session took place 6 months after the program and showed lasting effect of the motor skill learning in terms of sEMG pattern classification accuracy. The results indicated that with proper feedback training, amputees could learn unique muscle activation patterns that allow them to trigger intended prosthesis functions, and the original motor control scheme is updated. The effect of such motor skill learning could help to improve myoelectric prosthetic control performance.

摘要

肌电假手是上肢截肢者恢复手部功能的有效工具。在用于识别表面肌电图(sEMG)模式的模式识别算法方面已经取得了很大进展,但很少有人关注截肢者的运动学习过程。许多潜在的肌电假手使用者无法完全掌握控制方法,或者随着时间的推移表现下降。学会用残肢产生独特且一致的肌肉激活模式可能有助于截肢者更好地控制肌电假手。在本研究中,我们观察了两名截肢者运动技能学习的纵向效应,他们针对同一组目标假肢动作形成了替代性肌肉激活模式。在一个为期10周的项目中,截肢参与者在有实时sEMG视觉反馈且不与假肢交互的情况下,接受训练以产生独特且恒定的肌肉激活。最后,他们的sEMG模式彼此不同,且与非截肢对照组也不同。对于某些预期的手部动作,观察到均方根(RMS)方差逐渐减小。还使用为移动sEMG模式识别设计的CNN-LSTM混合分类器评估了学习效果。分类准确率随时间呈上升趋势,这意味着肌电假手控制的潜在性能提升。在项目结束6个月后进行了一次随访,结果显示运动技能学习在sEMG模式分类准确率方面具有持久效果。结果表明,通过适当的反馈训练,截肢者可以学习独特的肌肉激活模式,从而触发预期的假肢功能,并且原始的运动控制方案得到更新。这种运动技能学习的效果有助于提高肌电假肢的控制性能。

相似文献

1
Alternative muscle synergy patterns of upper limb amputees.
Cogn Neurodyn. 2024 Jun;18(3):1119-1133. doi: 10.1007/s11571-023-09969-5. Epub 2023 Apr 26.
2
A motion-classification strategy based on sEMG-EEG signal combination for upper-limb amputees.
J Neuroeng Rehabil. 2017 Jan 7;14(1):2. doi: 10.1186/s12984-016-0212-z.
3
Locomotor Adaptation by Transtibial Amputees Walking With an Experimental Powered Prosthesis Under Continuous Myoelectric Control.
IEEE Trans Neural Syst Rehabil Eng. 2016 May;24(5):573-81. doi: 10.1109/TNSRE.2015.2441061. Epub 2015 Jun 4.
5
Improved prosthetic hand control with concurrent use of myoelectric and inertial measurements.
J Neuroeng Rehabil. 2017 Jul 11;14(1):71. doi: 10.1186/s12984-017-0284-4.
6
Simultaneous sEMG Recognition of Gestures and Force Levels for Interaction With Prosthetic Hand.
IEEE Trans Neural Syst Rehabil Eng. 2022;30:2426-2436. doi: 10.1109/TNSRE.2022.3199809. Epub 2022 Sep 1.
8
HD-sEMG Signal Denoising Method for Improved Classification Performance in Transhumeral Amputees Pros thesis Control.
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:857-861. doi: 10.1109/EMBC46164.2021.9630206.
9
Biosignal-based transferable attention Bi-ConvGRU deep network for hand-gesture recognition towards online upper-limb prosthesis control.
Comput Methods Programs Biomed. 2022 Sep;224:106999. doi: 10.1016/j.cmpb.2022.106999. Epub 2022 Jul 8.
10
sEMG-Based Hand Posture Recognition and Visual Feedback Training for the Forearm Amputee.
Sensors (Basel). 2022 Oct 19;22(20):7984. doi: 10.3390/s22207984.

引用本文的文献

1
Printed sensing human-machine interface with individualized adaptive machine learning.
Sci Adv. 2025 Sep 12;11(37):eadw3725. doi: 10.1126/sciadv.adw3725. Epub 2025 Sep 10.
2
Optimizing the impact of time domain segmentation techniques on upper limb EMG decoding using multimodal features.
PLoS One. 2025 May 8;20(5):e0322580. doi: 10.1371/journal.pone.0322580. eCollection 2025.

本文引用的文献

1
User Performance With a Transradial Multi-Articulating Hand Prosthesis During Pattern Recognition and Direct Control Home Use.
IEEE Trans Neural Syst Rehabil Eng. 2023;31:271-281. doi: 10.1109/TNSRE.2022.3221558. Epub 2023 Jan 31.
2
High-Density Electromyography Provides Improved Understanding of Muscle Function for Those With Amputation.
Front Med Technol. 2021 Aug 9;3:690285. doi: 10.3389/fmedt.2021.690285. eCollection 2021.
4
A portable, self-contained neuroprosthetic hand with deep learning-based finger control.
J Neural Eng. 2021 Oct 11;18(5). doi: 10.1088/1741-2552/ac2a8d.
5
Surface EMG cross talk quantified at the motor unit population level for muscles of the hand, thigh, and calf.
J Appl Physiol (1985). 2021 Aug 1;131(2):808-820. doi: 10.1152/japplphysiol.01041.2020. Epub 2021 Jul 8.
7
A One-Dimensional CNN-LSTM Model for Epileptic Seizure Recognition Using EEG Signal Analysis.
Front Neurosci. 2020 Dec 10;14:578126. doi: 10.3389/fnins.2020.578126. eCollection 2020.
9
Surface Electromyography Applied to Gait Analysis: How to Improve Its Impact in Clinics?
Front Neurol. 2020 Sep 4;11:994. doi: 10.3389/fneur.2020.00994. eCollection 2020.
10
Electrode Shifts Estimation and Adaptive Correction for Improving Robustness of sEMG-Based Recognition.
IEEE J Biomed Health Inform. 2021 Apr;25(4):1101-1110. doi: 10.1109/JBHI.2020.3012698. Epub 2021 Apr 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验