Gerosa Fannie M, Marsden Alison L
Department of Bioengineering, Stanford University, CA, USA.
Institute for Computational and Mathematical Engineering, Stanford University, CA, USA.
Comput Methods Appl Mech Eng. 2024 May 15;425. doi: 10.1016/j.cma.2024.116942. Epub 2024 Mar 26.
Fluid-structure interaction with contact poses profound mathematical and numerical challenges, particularly when considering realistic contact scenarios and the influence of surface roughness. Computationally, contact introduces challenges in altering the fluid domain topology and preserving stress balance. This work introduces a new mathematical framework for a unified continuum description of fluid-porous-structure-contact interaction (FPSCI), leveraging the Navier-Stokes-Brinkman (NSB) equations to incorporate porous effects within the surface asperities in the contact region. Our approach maintains mechanical consistency during contact, circumventing issues associated with contact models and complex interface coupling conditions, allowing for the modeling of tangential creeping flows due to surface roughness. The unified continuum and variational multiscale formulation ensure robustness by enabling stable and unified integration of fluid, porous, and solid sub-problems. Computational efficiency and ease of implementation - key advantages of our approach - are demonstrated by solving two benchmark problems of a falling ball and an idealized heart valve. This research has broad implications for fields reliant on accurate fluid-structure interactions and promising advancements in modeling and numerical simulation techniques.
考虑到实际接触场景和表面粗糙度的影响,流固接触相互作用带来了深刻的数学和数值挑战。在计算方面,接触在改变流体域拓扑结构和保持应力平衡方面带来了挑战。这项工作引入了一个新的数学框架,用于对流体-多孔介质-结构-接触相互作用(FPSCI)进行统一的连续介质描述,利用纳维-斯托克斯-布林克曼(NSB)方程将多孔效应纳入接触区域表面粗糙度内。我们的方法在接触过程中保持力学一致性,规避了与接触模型和复杂界面耦合条件相关的问题,从而能够对由于表面粗糙度引起的切向蠕动流进行建模。统一的连续介质和变分多尺度公式通过实现流体、多孔介质和固体子问题的稳定和统一积分来确保鲁棒性。通过求解落球和理想化心脏瓣膜这两个基准问题,证明了我们方法的计算效率和易于实现的关键优势。这项研究对依赖精确流固相互作用的领域以及建模和数值模拟技术的有前景的进展具有广泛的意义。