Suppr超能文献

一种用于流体-多孔结构-接触相互作用的力学一致统一公式。

A mechanically consistent unified formulation for fluid-porous-structure-contact interaction.

作者信息

Gerosa Fannie M, Marsden Alison L

机构信息

Department of Bioengineering, Stanford University, CA, USA.

Institute for Computational and Mathematical Engineering, Stanford University, CA, USA.

出版信息

Comput Methods Appl Mech Eng. 2024 May 15;425. doi: 10.1016/j.cma.2024.116942. Epub 2024 Mar 26.

Abstract

Fluid-structure interaction with contact poses profound mathematical and numerical challenges, particularly when considering realistic contact scenarios and the influence of surface roughness. Computationally, contact introduces challenges in altering the fluid domain topology and preserving stress balance. This work introduces a new mathematical framework for a unified continuum description of fluid-porous-structure-contact interaction (FPSCI), leveraging the Navier-Stokes-Brinkman (NSB) equations to incorporate porous effects within the surface asperities in the contact region. Our approach maintains mechanical consistency during contact, circumventing issues associated with contact models and complex interface coupling conditions, allowing for the modeling of tangential creeping flows due to surface roughness. The unified continuum and variational multiscale formulation ensure robustness by enabling stable and unified integration of fluid, porous, and solid sub-problems. Computational efficiency and ease of implementation - key advantages of our approach - are demonstrated by solving two benchmark problems of a falling ball and an idealized heart valve. This research has broad implications for fields reliant on accurate fluid-structure interactions and promising advancements in modeling and numerical simulation techniques.

摘要

考虑到实际接触场景和表面粗糙度的影响,流固接触相互作用带来了深刻的数学和数值挑战。在计算方面,接触在改变流体域拓扑结构和保持应力平衡方面带来了挑战。这项工作引入了一个新的数学框架,用于对流体-多孔介质-结构-接触相互作用(FPSCI)进行统一的连续介质描述,利用纳维-斯托克斯-布林克曼(NSB)方程将多孔效应纳入接触区域表面粗糙度内。我们的方法在接触过程中保持力学一致性,规避了与接触模型和复杂界面耦合条件相关的问题,从而能够对由于表面粗糙度引起的切向蠕动流进行建模。统一的连续介质和变分多尺度公式通过实现流体、多孔介质和固体子问题的稳定和统一积分来确保鲁棒性。通过求解落球和理想化心脏瓣膜这两个基准问题,证明了我们方法的计算效率和易于实现的关键优势。这项研究对依赖精确流固相互作用的领域以及建模和数值模拟技术的有前景的进展具有广泛的意义。

相似文献

1
A mechanically consistent unified formulation for fluid-porous-structure-contact interaction.
Comput Methods Appl Mech Eng. 2024 May 15;425. doi: 10.1016/j.cma.2024.116942. Epub 2024 Mar 26.
3
A sharp interface Lagrangian-Eulerian method for flexible-body fluid-structure interaction.
J Comput Phys. 2023 Sep 1;488. doi: 10.1016/j.jcp.2023.112174. Epub 2023 Apr 24.
4
A unified continuum and variational multiscale formulation for fluids, solids, and fluid-structure interaction.
Comput Methods Appl Mech Eng. 2018 Aug;337:549-597. doi: 10.1016/j.cma.2018.03.045. Epub 2018 Apr 9.
5
Differential geometry based multiscale models.
Bull Math Biol. 2010 Aug;72(6):1562-622. doi: 10.1007/s11538-010-9511-x. Epub 2010 Feb 19.
6
Evaluation of a coupled model for numerical simulation of a multiphase flow system in a porous medium and a surface fluid.
J Contam Hydrol. 2015 Sep;180:34-55. doi: 10.1016/j.jconhyd.2015.07.005. Epub 2015 Jul 29.
7
A contact formulation based on a volumetric potential: Application to isogeometric simulations of atrioventricular valves.
Comput Methods Appl Mech Eng. 2018 Mar 1;330:522-546. doi: 10.1016/j.cma.2017.11.007. Epub 2017 Nov 16.
8
An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves.
Comput Methods Appl Mech Eng. 2015 Feb 1;284:1005-1053. doi: 10.1016/j.cma.2014.10.040.
9
A multiscale model for virus capsid dynamics.
Int J Biomed Imaging. 2010;2010:308627. doi: 10.1155/2010/308627. Epub 2010 Mar 9.
10
Computational fluid dynamics of blood flow in an idealized left human heart.
Int J Numer Method Biomed Eng. 2021 Nov;37(11):e3287. doi: 10.1002/cnm.3287. Epub 2019 Dec 9.

本文引用的文献

1
Extended finite element method for fluid-structure interaction in wave membrane blood pump.
Int J Numer Method Biomed Eng. 2021 Jul;37(7):e3467. doi: 10.1002/cnm.3467. Epub 2021 May 4.
3
A unified continuum and variational multiscale formulation for fluids, solids, and fluid-structure interaction.
Comput Methods Appl Mech Eng. 2018 Aug;337:549-597. doi: 10.1016/j.cma.2018.03.045. Epub 2018 Apr 9.
4
3D Fluid-Structure Interaction Simulation of Aortic Valves Using a Unified Continuum ALE FEM Model.
Front Physiol. 2018 Apr 16;9:363. doi: 10.3389/fphys.2018.00363. eCollection 2018.
5
Spontaneous oscillation and fluid-structure interaction of cilia.
Proc Natl Acad Sci U S A. 2018 Apr 24;115(17):4417-4422. doi: 10.1073/pnas.1712042115. Epub 2018 Apr 9.
6
Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions.
Int J Numer Method Biomed Eng. 2012 Mar;28(3):317-45. doi: 10.1002/cnm.1445.
7
An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves.
Comput Methods Appl Mech Eng. 2015 Feb 1;284:1005-1053. doi: 10.1016/j.cma.2014.10.040.
8
Solid-solid contacts due to surface roughness and their effects on suspension behaviour.
Philos Trans A Math Phys Eng Sci. 2003 May 15;361(1806):871-94. doi: 10.1098/rsta.2003.1170.
9
A three-dimensional computational analysis of fluid-structure interaction in the aortic valve.
J Biomech. 2003 Jan;36(1):103-12. doi: 10.1016/s0021-9290(02)00244-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验