Suppr超能文献

来自腐生菌的强大细胞壁生物质降解酶系统

Powerful cell wall biomass degradation enzymatic system from saprotrophic .

作者信息

Tong Lige, Li Yunaying, Lou Xinke, Wang Bin, Jin Cheng, Fang Wenxia

机构信息

National Key Laboratory of Non-food Biomass Energy Technology, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China.

College of Life Sciences, Hebei Innovation Center for Bioengineering and Biotechnology, Institute of Life Sciences and Green Development, Baoding, Hebei, China.

出版信息

Cell Surf. 2024 May 21;11:100126. doi: 10.1016/j.tcsw.2024.100126. eCollection 2024 Jun.

Abstract

Cell wall biomass, Earth's most abundant natural resource, holds significant potential for sustainable biofuel production. Composed of cellulose, hemicellulose, lignin, pectin, and other polymers, the plant cell wall provides essential structural support to diverse organisms in nature. In contrast, non-plant species like insects, crustaceans, and fungi rely on chitin as their primary structural polysaccharide. The saprophytic fungus has been widely recognized for its adaptability to various environmental conditions. It achieves this by secreting different cell wall biomass degradation enzymes to obtain essential nutrients. This review compiles a comprehensive collection of cell wall degradation enzymes derived from , including cellulases, hemicellulases, various chitin degradation enzymes, and other polymer degradation enzymes. Notably, these enzymes exhibit biochemical characteristics such as temperature tolerance or acid adaptability, indicating their potential applications across a spectrum of industries.

摘要

细胞壁生物质是地球上最丰富的自然资源,在可持续生物燃料生产方面具有巨大潜力。植物细胞壁由纤维素、半纤维素、木质素、果胶和其他聚合物组成,为自然界中的各种生物提供重要的结构支撑。相比之下,昆虫、甲壳类动物和真菌等非植物物种则依赖几丁质作为其主要结构多糖。腐生真菌因其对各种环境条件的适应性而被广泛认可。它通过分泌不同的细胞壁生物质降解酶来获取必需营养物质,从而实现这一点。本综述汇编了来自[具体真菌名称未给出]的细胞壁降解酶的全面集合,包括纤维素酶、半纤维素酶、各种几丁质降解酶和其他聚合物降解酶。值得注意的是,这些酶表现出诸如耐热性或耐酸性等生化特性,表明它们在一系列行业中具有潜在应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2232/11143905/8d5a2a8fe29a/gr1.jpg

相似文献

1
Powerful cell wall biomass degradation enzymatic system from saprotrophic .
Cell Surf. 2024 May 21;11:100126. doi: 10.1016/j.tcsw.2024.100126. eCollection 2024 Jun.
2
Quantitative proteomic study of Aspergillus Fumigatus secretome revealed deamidation of secretory enzymes.
J Proteomics. 2015 Apr 24;119:154-68. doi: 10.1016/j.jprot.2015.02.007. Epub 2015 Feb 24.
4
Insight into Enzymatic Degradation of Corn, Wheat, and Soybean Cell Wall Cellulose Using Quantitative Secretome Analysis of Aspergillus fumigatus.
J Proteome Res. 2016 Dec 2;15(12):4387-4402. doi: 10.1021/acs.jproteome.6b00465. Epub 2016 Oct 10.
5
Transcriptional regulation of plant cell wall degradation by filamentous fungi.
FEMS Microbiol Rev. 2005 Sep;29(4):719-39. doi: 10.1016/j.femsre.2004.11.006. Epub 2004 Dec 22.
6
Genome-Wide Association Study for Major Biofuel Traits in Sorghum Using Minicore Collection.
Protein Pept Lett. 2021;28(8):909-928. doi: 10.2174/0929866528666210215141243.
7
Transcriptome and secretome analysis of Aspergillus fumigatus in the presence of sugarcane bagasse.
BMC Genomics. 2018 Apr 3;19(1):232. doi: 10.1186/s12864-018-4627-8.
9
Plant cell wall-degrading enzymes and their secretion in plant-pathogenic fungi.
Annu Rev Phytopathol. 2014;52:427-51. doi: 10.1146/annurev-phyto-102313-045831. Epub 2014 Jun 16.

引用本文的文献

1
Fabrication of nanozyme thixotropic anionic hydrogel for treating fungal keratitis by Dectin-1/p38 pathway.
Appl Microbiol Biotechnol. 2025 Jun 26;109(1):153. doi: 10.1007/s00253-025-13529-8.
2
Phloroglucinol-Based Antimicrobial Shape-Memory Photopolymers for Microimprint Lithography.
ACS Omega. 2024 Dec 12;9(51):50526-50536. doi: 10.1021/acsomega.4c08277. eCollection 2024 Dec 24.

本文引用的文献

2
Structure, catalysis, chitin transport, and selective inhibition of chitin synthase.
Nat Commun. 2023 Aug 8;14(1):4776. doi: 10.1038/s41467-023-40479-4.
3
Inhibition of chitin deacetylases to attenuate plant fungal diseases.
Nat Commun. 2023 Jun 29;14(1):3857. doi: 10.1038/s41467-023-39562-7.
8
Biochemical purification and characterization of a truncated acidic, thermostable chitinase from marine fungus for N-acetylglucosamine production.
Front Bioeng Biotechnol. 2022 Oct 4;10:1013313. doi: 10.3389/fbioe.2022.1013313. eCollection 2022.
10
Biochemical Characterization of Thermostable Carboxymethyl Cellulase and β-Glucosidase from Aspergillus fumigatus JCM 10253.
Appl Biochem Biotechnol. 2022 Jun;194(6):2503-2527. doi: 10.1007/s12010-022-03839-2. Epub 2022 Feb 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验