Lechtenberg Thorsten, Wynands Benedikt, Müller Moritz-Fabian, Polen Tino, Noack Stephan, Wierckx Nick
Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany.
Metab Eng Commun. 2024 May 10;18:e00235. doi: 10.1016/j.mec.2024.e00235. eCollection 2024 Jun.
The aldehyde 5-(hydroxymethyl)furfural (HMF) is of great importance for a circular bioeconomy. It is a renewable platform chemical that can be converted into a range of useful compounds to replace petroleum-based products such as the green plastic monomer 2,5-furandicarboxylic acid (FDCA). However, it also exhibits microbial toxicity for example hindering the efficient biotechnological valorization of lignocellulosic hydrolysates. Thus, there is an urgent need for tolerance-improved organisms applicable to whole-cell biocatalysis. Here, we engineer an oxidation-deficient derivative of the naturally robust and emerging biotechnological workhorse VLB120 by robotics-assisted adaptive laboratory evolution (ALE). The deletion of HMF-oxidizing enzymes enabled for the first time evolution under constant selection pressure by the aldehyde, yielding strains with consistently improved growth characteristics in presence of the toxicant. Genome sequencing of evolved clones revealed loss-of function mutations in the LysR-type transcriptional regulator-encoding preventing expression of the associated efflux pump -. This knowledge allowed reverse engineering of strains with enhanced aldehyde tolerance, even in a background of active or overexpressed HMF oxidation machinery, demonstrating a synergistic effect of two distinct tolerance mechanisms.
醛类物质5-(羟甲基)糠醛(HMF)对循环生物经济至关重要。它是一种可再生的平台化学品,可转化为一系列有用的化合物,以替代石油基产品,如绿色塑料单体2,5-呋喃二甲酸(FDCA)。然而,它也表现出微生物毒性,例如阻碍木质纤维素水解产物的高效生物技术增值。因此,迫切需要适用于全细胞生物催化的耐受性提高的生物体。在这里,我们通过机器人辅助的适应性实验室进化(ALE)设计了一种天然强大且新兴的生物技术主力菌株VLB120的氧化缺陷衍生物。HMF氧化酶的缺失首次使得在醛的持续选择压力下能够进行进化,从而产生在有毒物质存在下生长特性持续改善的菌株。进化克隆的基因组测序揭示了编码LysR型转录调节因子的基因中的功能丧失突变,该突变阻止了相关外排泵的表达。这一知识使得即使在HMF氧化机制活跃或过表达的背景下,也能够对醛耐受性增强的菌株进行逆向工程,证明了两种不同耐受机制的协同效应。