Dana-Farber Cancer Institute, Department of Data Sciences, Boston, MA 02215, USA.
Harvard Medical School, Department of Biomedical Informatics, Boston, MA 02115, USA.
Gigascience. 2024 Jan 2;13. doi: 10.1093/gigascience/giae024.
Due to human error, sample swapping in large cohort studies with heterogeneous data types (e.g., mix of Oxford Nanopore Technologies, Pacific Bioscience, Illumina data, etc.) remains a common issue plaguing large-scale studies. At present, all sample swapping detection methods require costly and unnecessary (e.g., if data are only used for genome assembly) alignment, positional sorting, and indexing of the data in order to compare similarly. As studies include more samples and new sequencing data types, robust quality control tools will become increasingly important.
The similarity between samples can be determined using indexed k-mer sequence variants. To increase statistical power, we use coverage information on variant sites, calculating similarity using a likelihood ratio-based test. Per sample error rate, and coverage bias (i.e., missing sites) can also be estimated with this information, which can be used to determine if a spatially indexed principal component analysis (PCA)-based prescreening method can be used, which can greatly speed up analysis by preventing exhaustive all-to-all comparisons.
Because this tool processes raw data, is faster than alignment, and can be used on very low-coverage data, it can save an immense degree of computational resources in standard quality control (QC) pipelines. It is robust enough to be used on different sequencing data types, important in studies that leverage the strengths of different sequencing technologies. In addition to its primary use case of sample swap detection, this method also provides information useful in QC, such as error rate and coverage bias, as well as population-level PCA ancestry analysis visualization.
由于人为错误,在具有异质数据类型(例如,混合牛津纳米孔技术、太平洋生物科学、Illumina 数据等)的大型队列研究中,样本交换仍然是困扰大规模研究的常见问题。目前,所有样本交换检测方法都需要昂贵且不必要的(例如,如果数据仅用于基因组组装)对齐、位置排序和数据索引,以便进行类似的比较。随着研究包含更多的样本和新的测序数据类型,强大的质量控制工具将变得越来越重要。
可以使用索引 k-mer 序列变体来确定样本之间的相似性。为了提高统计能力,我们使用变异位点的覆盖信息,使用基于似然比的检验来计算相似性。还可以使用此信息估计每个样本的错误率和覆盖偏差(即缺失位点),这可用于确定是否可以使用基于空间索引的主成分分析(PCA)预筛选方法,这可以通过防止穷举的全对全比较来大大加快分析速度。
由于该工具处理原始数据,比对齐更快,并且可以在非常低的覆盖数据上使用,因此它可以在标准质量控制(QC)管道中节省大量的计算资源。它足够强大,可以用于不同的测序数据类型,这在利用不同测序技术优势的研究中非常重要。除了其主要的样本交换检测用例外,该方法还提供了有用的 QC 信息,例如错误率和覆盖偏差,以及人群水平 PCA 祖先分析可视化。