Jiang Yuheng, Fan Yingying, Liu Xiaolong, Xie Jun, Li Siyang, Huang Kefu, Fan Xiaoyu, Long Chang, Zuo Lulu, Zhao Wenshi, Zhang Xu, Sun Juehan, Xu Peng, Li Jiong, Dong Fan, Tan Ting, Tang Zhiyong
Chinese Academy of Science (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
Center for Nanoscale Science and Technology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P. R. China.
J Am Chem Soc. 2024 Jun 12;146(23):16039-16051. doi: 10.1021/jacs.4c03083. Epub 2024 Jun 4.
Efficient methane photooxidation to formic acid (HCOOH) has emerged as a sustainable approach to simultaneously generate value-added chemicals and harness renewable energy. However, the persistent challenge lies in achieving a high yield and selectivity for HCOOH formation, primarily due to the complexities associated with modulating intermediate conversion and desorption after methane activation. In this study, we employ first-principles calculations as a comprehensive guiding tool and discover that by precisely controlling the O activation process on noble metal cocatalysts and the adsorption strength of carbon-containing intermediates on metal oxide supports, one can finely tune the selectivity of methane photooxidation products. Specifically, a bifunctional catalyst comprising Pd nanoparticles and monoclinic WO (Pd/WO) would possess optimal O activation kinetics and an intermediate oxidation/desorption barrier, thereby promoting HCOOH formation. As evidenced by experiments, the Pd/WO catalyst achieves an exceptional HCOOH yield of 4.67 mmol g h with a high selectivity of 62% under full-spectrum light irradiation at room temperature using molecular O. Notably, these results significantly outperform the state-of-the-art photocatalytic systems operated under identical condition.
将甲烷高效光氧化生成甲酸(HCOOH)已成为一种可持续的方法,可同时生成增值化学品并利用可再生能源。然而,持续存在的挑战在于实现高产量和高选择性的HCOOH生成,这主要是由于甲烷活化后调节中间产物转化和解吸相关的复杂性。在本研究中,我们采用第一性原理计算作为全面的指导工具,发现通过精确控制贵金属助催化剂上的O活化过程以及含碳中间体在金属氧化物载体上的吸附强度,可以微调甲烷光氧化产物的选择性。具体而言,一种由钯纳米颗粒和单斜晶系WO(Pd/WO)组成的双功能催化剂将具有最佳的O活化动力学和中间氧化/解吸势垒,从而促进HCOOH的形成。实验证明,在室温下使用分子O进行全光谱光照时,Pd/WO催化剂实现了4.67 mmol g h的优异HCOOH产率和62%的高选择性。值得注意的是,这些结果明显优于在相同条件下运行的现有光催化系统。