Suppr超能文献

利用电子健康数据预测医学复杂成年人的自我报告社会风险。

Predicting Self-Reported Social Risk in Medically Complex Adults Using Electronic Health Data.

机构信息

Division of Research, Kaiser Permanente Northern California, Oakland, CA.

Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle WA.

出版信息

Med Care. 2024 Sep 1;62(9):590-598. doi: 10.1097/MLR.0000000000002021. Epub 2024 Jun 4.

Abstract

BACKGROUND

Social barriers to health care, such as food insecurity, financial distress, and housing instability, may impede effective clinical management for individuals with chronic illness. Systematic strategies are needed to more efficiently identify at-risk individuals who may benefit from proactive outreach by health care systems for screening and referral to available social resources.

OBJECTIVE

To create a predictive model to identify a higher likelihood of food insecurity, financial distress, and/or housing instability among adults with multiple chronic medical conditions.

RESEARCH DESIGN AND SUBJECTS

We developed and validated a predictive model in adults with 2 or more chronic conditions who were receiving care within Kaiser Permanente Northern California (KPNC) between January 2017 and February 2020. The model was developed to predict the likelihood of a "yes" response to any of 3 validated self-reported survey questions related to current concerns about food insecurity, financial distress, and/or housing instability. External model validation was conducted in a separate cohort of adult non-Medicaid KPNC members aged 35-85 who completed a survey administered to a random sample of health plan members between April and June 2021 (n = 2820).

MEASURES

We examined the performance of multiple model iterations by comparing areas under the receiver operating characteristic curves (AUCs). We also assessed algorithmic bias related to race/ethnicity and calculated model performance at defined risk thresholds for screening implementation.

RESULTS

Patients in the primary modeling cohort (n = 11,999) had a mean age of 53.8 (±19.3) years, 64.7% were women, and 63.9% were of non-White race/ethnicity. The final, simplified model with 30 predictors (including utilization, diagnosis, behavior, insurance, neighborhood, and pharmacy-based variables) had an AUC of 0.68. The model remained robust within different race/ethnic strata.

CONCLUSIONS

Our results demonstrated that a predictive model developed using information gleaned from the medical record and from public census tract data can be used to identify patients who may benefit from proactive social needs assessment. Depending on the prevalence of social needs in the target population, different risk output thresholds could be set to optimize positive predictive value for successful outreach. This predictive model-based strategy provides a pathway for prioritizing more intensive social risk outreach and screening efforts to the patients who may be in greatest need.

摘要

背景

医疗保健方面的社会障碍,如食物无保障、经济困难和住房不稳定,可能会阻碍慢性病患者的有效临床管理。需要系统的策略来更有效地识别可能受益于医疗系统主动进行筛查和转介至现有社会资源的高危个体。

目的

创建一个预测模型,以识别患有多种慢性医学疾病的成年人中食物无保障、经济困难和/或住房不稳定的更高可能性。

研究设计和主体

我们在 2017 年 1 月至 2020 年 2 月期间在 Kaiser Permanente Northern California(KPNC)接受治疗的 2 种或更多种慢性疾病的成年人中开发和验证了一个预测模型。该模型旨在预测对 3 个经验证的自我报告调查问题中任何一个的“是”回答的可能性,这些问题涉及当前对食物无保障、经济困难和/或住房不稳定的担忧。在 2021 年 4 月至 6 月期间对 KPNC 非 Medicaid 成员的 35-85 岁成年人群中进行的一项调查中,对一个独立的成年人队列(n=2820)进行了外部模型验证。

措施

我们通过比较接受者操作特征曲线(AUC)下的面积来检查多个模型迭代的性能。我们还评估了与种族/民族有关的算法偏差,并计算了用于实施筛查的定义风险阈值的模型性能。

结果

初级建模队列中的患者(n=11999)平均年龄为 53.8(±19.3)岁,64.7%为女性,63.9%为非白种人。具有 30 个预测因子(包括利用、诊断、行为、保险、社区和药房变量)的最终简化模型的 AUC 为 0.68。该模型在不同的种族/民族群体中仍然稳健。

结论

我们的结果表明,使用从病历和公共人口普查区数据中收集的信息开发的预测模型可以用于识别可能受益于主动社会需求评估的患者。根据目标人群中社会需求的流行程度,可以设置不同的风险输出阈值,以优化积极预测值,从而实现成功的外展。这种基于预测模型的策略为优先考虑更深入的社会风险外展和筛查努力提供了途径,以满足最需要的患者。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验