Suppr超能文献

超声诱导蒸发盐滴中结晶的晶粒细化

Ultrasound induced grain refinement of crystallization in evaporative saline droplets.

作者信息

Zhang Xiaoqiang, Chen Hongyue, Wang Yuhan, Gao Xin, Wang Zhijun, Wang Nan, Zang Duyang

机构信息

MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China; Shaanxi Liquid Physics Research Center, Xi'an 710129, China.

Nanjing Sonodrive Technology Co., Ltd., Nanjing 210034, China.

出版信息

Ultrason Sonochem. 2024 Jul;107:106938. doi: 10.1016/j.ultsonch.2024.106938. Epub 2024 May 31.

Abstract

We investigate the effect of ultrasound on the evaporation and crystallization of sessile NaCl solution droplets which were positioned in traveling or standing wave ultrasound field. The experimental results indicated that the ultrasound field can significantly accelerate the evaporation rate of the sessile droplets and refine the crystal grains. By adjusting the distance between the sessile droplets and the ultrasound emitter, it is found that, in traveling wave ultrasound field, the sessile droplet evaporation time and the time for the appearance of NaCl grains exhibited a fluctuating increase as the droplet-emitter distance increased. While in the standing wave ultrasound, the sessile droplet evaporation rate increases with the increasing droplet-emitter distance. Overall, the traveling wave ultrasound field has a stronger effect on grain refinement of the sessile droplets than the standing wave ultrasound field. The grain refinement is attributed to the decrease of critical nucleation radius caused by ultrasound energy and the increase of the nucleation rate caused by the accelerated evaporation rate. In addition, the breakage of grains caused by ultrasonic cavitation would also lead to grain refinement.

摘要

我们研究了超声波对置于行波或驻波超声场中的固着型氯化钠溶液液滴蒸发和结晶的影响。实验结果表明,超声场可显著加速固着型液滴的蒸发速率并细化晶粒。通过调整固着型液滴与超声发射器之间的距离发现,在行波超声场中,随着液滴与发射器距离的增加,固着型液滴的蒸发时间以及氯化钠晶粒出现的时间呈波动增加。而在驻波超声中,固着型液滴的蒸发速率随液滴与发射器距离的增加而增大。总体而言,行波超声场对固着型液滴的晶粒细化作用比驻波超声场更强。晶粒细化归因于超声能量导致的临界成核半径减小以及蒸发速率加快引起的成核速率增加。此外,超声空化导致的晶粒破碎也会导致晶粒细化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdd1/11179072/faa18ab1eb86/gr1.jpg

相似文献

1
Ultrasound induced grain refinement of crystallization in evaporative saline droplets.
Ultrason Sonochem. 2024 Jul;107:106938. doi: 10.1016/j.ultsonch.2024.106938. Epub 2024 May 31.
2
The evaporation behavior of sessile droplets from aqueous saline solutions.
Phys Chem Chem Phys. 2015 Sep 14;17(34):22296-303. doi: 10.1039/c5cp02444g. Epub 2015 Aug 6.
3
Magnetic regulation on evaporation behavior of ferrofluid sessile droplets.
Electrophoresis. 2023 Dec;44(23):1879-1888. doi: 10.1002/elps.202300064. Epub 2023 Jul 6.
4
Expressions for the evaporation of sessile liquid droplets incorporating the evaporative cooling effect.
J Colloid Interface Sci. 2016 Dec 15;484:291-297. doi: 10.1016/j.jcis.2016.09.011. Epub 2016 Sep 9.
6
Analytical Model for Diffusive Evaporation of Sessile Droplets Coupled with Interfacial Cooling Effect.
Langmuir. 2018 Jun 12;34(23):6955-6962. doi: 10.1021/acs.langmuir.7b03862. Epub 2018 May 30.
7
Evaporation of Saline Droplets on a Superhydrophobic Substrate: Formation of Crystal Shell and "Legs".
Materials (Basel). 2023 Jul 22;16(14):5168. doi: 10.3390/ma16145168.
9
Evaporation and drying characteristics of the sessile ferrofluid droplet under a horizontal magnetic field.
Fundam Res. 2021 Sep 23;2(2):222-229. doi: 10.1016/j.fmre.2021.08.016. eCollection 2022 Mar.
10
Numerical Study on the Evaporation of a Non-Spherical Sessile Droplet.
Micromachines (Basel). 2022 Dec 28;14(1):76. doi: 10.3390/mi14010076.

引用本文的文献

2
Application and development of ultrasound in industrial crystallization.
Ultrason Sonochem. 2024 Dec;111:107062. doi: 10.1016/j.ultsonch.2024.107062. Epub 2024 Sep 11.

本文引用的文献

1
Separation performance and agglomeration behavior analysis of solution crystallization in food engineering.
Food Chem. 2023 Sep 1;419:136051. doi: 10.1016/j.foodchem.2023.136051. Epub 2023 Apr 5.
2
Treatment of rhodamine B with cavitation technology: comparison of hydrodynamic cavitation with ultrasonic cavitation.
RSC Adv. 2021 Jan 28;11(9):5096-5106. doi: 10.1039/d0ra07727e. eCollection 2021 Jan 25.
3
Effect of ultrasound on the kinetics of anti-solvent crystallization of sucrose.
Ultrason Sonochem. 2022 Jan;82:105886. doi: 10.1016/j.ultsonch.2021.105886. Epub 2021 Dec 27.
4
Controlling Nucleation Pathways in Zeolite Crystallization: Seeding Conceptual Methodologies for Advanced Materials Design.
J Am Chem Soc. 2021 Dec 29;143(51):21446-21460. doi: 10.1021/jacs.1c11014. Epub 2021 Dec 16.
5
Effects of Chemical and Geometric Microstructures on the Crystallization of Surface Droplets during Solvent Exchange.
Langmuir. 2021 May 4;37(17):5290-5298. doi: 10.1021/acs.langmuir.1c00354. Epub 2021 Apr 23.
6
Enhancement of lysozyme crystallization under ultrasound field.
Ultrason Sonochem. 2020 May;63:104975. doi: 10.1016/j.ultsonch.2020.104975. Epub 2020 Jan 18.
8
Crystallization Methods for Preparation of Nanocrystals for Drug Delivery System.
Curr Pharm Des. 2015;21(22):3131-9. doi: 10.2174/1381612821666150531164350.
9
Effect of ultrasonic treatments on nanoparticle preparation of acid-hydrolyzed waxy maize starch.
Carbohydr Polym. 2013 Apr 2;93(2):582-8. doi: 10.1016/j.carbpol.2012.12.050. Epub 2012 Dec 26.
10
Applications of ultrasound in food technology: Processing, preservation and extraction.
Ultrason Sonochem. 2011 Jul;18(4):813-35. doi: 10.1016/j.ultsonch.2010.11.023. Epub 2010 Dec 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验