Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
Nat Commun. 2024 Jun 4;15(1):4601. doi: 10.1038/s41467-024-48748-6.
Precise neurostimulation can revolutionize therapies for neurological disorders. Electrode-based stimulation devices face challenges in achieving precise and consistent targeting due to the immune response and the limited penetration of electrical fields. Ultrasound can aid in energy propagation, but transcranial ultrasound stimulation in the deep brain has limited spatial resolution caused by bone and tissue scattering. Here, we report an implantable piezoelectric ultrasound stimulator (ImPULS) that generates an ultrasonic focal pressure of 100 kPa to modulate the activity of neurons. ImPULS is a fully-encapsulated, flexible piezoelectric micromachined ultrasound transducer that incorporates a biocompatible piezoceramic, potassium sodium niobate [(K,Na)NbO]. The absence of electrochemically active elements poses a new strategy for achieving long-term stability. We demonstrated that ImPULS can i) excite neurons in a mouse hippocampal slice ex vivo, ii) activate cells in the hippocampus of an anesthetized mouse to induce expression of activity-dependent gene c-Fos, and iii) stimulate dopaminergic neurons in the substantia nigra pars compacta to elicit time-locked modulation of nigrostriatal dopamine release. This work introduces a non-genetic ultrasound platform for spatially-localized neural stimulation and exploration of basic functions in the deep brain.
精确的神经刺激可以彻底改变神经疾病的治疗方法。基于电极的刺激设备在实现精确和一致的靶向方面面临挑战,这是由于免疫反应和电场的有限穿透性所致。超声可以辅助能量传播,但由于骨骼和组织散射,经颅超声刺激深部大脑的空间分辨率有限。在这里,我们报告了一种可植入的压电超声刺激器(ImPULS),它可以产生 100kPa 的超声焦点压力来调节神经元的活动。ImPULS 是一种完全封装的、灵活的压电微加工超声换能器,它结合了一种生物相容性的压电陶瓷,铌酸钾钠 [(K,Na)NbO]。不存在电化学活性元件为实现长期稳定性提供了一种新策略。我们证明了 ImPULS 可以:i)在离体小鼠海马切片中激发神经元,ii)在麻醉小鼠的海马中激活细胞,以诱导活性依赖性基因 c-Fos 的表达,以及 iii)刺激黑质致密部的多巴胺能神经元,以引发黑质纹状体多巴胺释放的定时调制。这项工作引入了一种非遗传超声平台,用于在深部大脑中进行空间定位的神经刺激和基本功能的探索。