Department of Architecture and Civil Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden.
Swedish Geotechnical Institute (SGI), 58193, Linköping, Sweden.
Environ Sci Pollut Res Int. 2024 Jun;31(28):40925-40940. doi: 10.1007/s11356-024-33858-x. Epub 2024 Jun 5.
Phytoextraction, utilizing plants to remove soil contaminants, is a promising approach for environmental remediation but its application is often limited due to the long time requirements. This study aims to develop simplified and user-friendly probabilistic models to estimate the time required for phytoextraction of contaminants while considering uncertainties. More specifically we: i) developed probabilistic models for time estimation, ii) applied these models using site-specific data from a field experiment testing pumpkin (Cucurbita pepo ssp. pepo cv. Howden) for phytoextraction of DDT and its metabolites (ΣDDX), iii) compared timeframes derived from site-specific data with literature-derived estimates, and iv) investigated model sensitivity and uncertainties through various modelling scenarios. The models indicate that phytoextraction with pumpkin to reduce the initial total concentration of ΣDDX in the soil (10 mg/kg ) to acceptable levels (1 mg/kg ) at the test site is infeasible within a reasonable timeframe, with time estimates ranging from 48-123 years based on literature data or 3 570-9 120 years with site-specific data using the linear or first-order exponential model, respectively. Our results suggest that phytoextraction may only be feasible at lower initial ΣDDX concentrations (< 5 mg/kg ) for soil polishing and that alternative phytomanagement strategies should be considered for this test site to manage the bioavailable fraction of DDX in the soil. The simplified modes presented can be useful tools in the communication with site owners and stakeholders about time approximations for planning phytoextraction interventions, thereby improving the decision basis for phytomanagement of contaminated sites.
植物萃取利用植物去除土壤污染物,是一种很有前途的环境修复方法,但由于需要很长时间,其应用往往受到限制。本研究旨在开发简化和用户友好的概率模型,以估计考虑不确定性时进行污染物植物萃取所需的时间。更具体地说,我们:i)开发了用于时间估计的概率模型,ii)使用来自现场试验的特定于地点的数据应用这些模型,该试验测试了南瓜(Cucurbita pepo ssp. pepo cv. Howden)对滴滴涕及其代谢物(ΣDDX)的植物萃取,iii)将从特定于地点的数据得出的时间框架与文献中得出的估计值进行比较,iv)通过各种建模情景研究了模型的敏感性和不确定性。这些模型表明,在试验场地上,利用南瓜从土壤中提取初始ΣDDX 总浓度(10mg/kg)到可接受的水平(1mg/kg),在合理的时间范围内是不可行的,根据文献数据,时间估计值从 48 到 123 年不等,或者根据特定于地点的数据,分别使用线性或一阶指数模型,时间估计值从 3570 到 9120 年不等。我们的结果表明,对于土壤抛光,植物萃取可能仅在初始ΣDDX 浓度较低(<5mg/kg)时才可行,对于该试验场地上 DDX 生物有效部分的管理,应考虑替代植物管理策略。所提出的简化模型可以成为与场地所有者和利益相关者就植物萃取干预措施的时间近似值进行沟通的有用工具,从而改善受污染场地的植物管理决策基础。