Suppr超能文献

心电图流中异常事件的方法学识别:系统映射研究。

Methodological identification of anomalies episodes in ECG streams: a systematic mapping study.

机构信息

Department of Artificial Intelligence and Data Science, National University of Computer and Emerging Sciences, Islamabad, Pakistan.

Information Systems Department, College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11432, Riyadh, Saudi Arabia.

出版信息

BMC Med Res Methodol. 2024 Jun 4;24(1):127. doi: 10.1186/s12874-024-02251-0.

Abstract

An electrocardiogram is a medical examination tool for measuring different patterns of heart blood flow circle either in the form of usual or non-invasive patterns. These patterns are useful for the identification of morbidity condition of the heart especially in certain conditions of heart abnormality and arrhythmia. Myocardial infarction (MI) is one of them that happened due to sudden blockage of blood by the cause of malfunction of heart. In electrocardiography (ECG) intensity of MI is highlighted on the basis of unusual patterns of T wave changes. Various studies have contributed for MI through T wave's classification, but more to the point of T wave has always attracted the ECG researchers. Methodology. This Study is primarily designed for proposing the combination of latest methods that are worked for the solutions of pre-defined research questions. Such solutions are designed in the form of the systematic review process (SLR) by following the Kitchen ham guidance. The literature survey is a two phase's process, at first phase collect the articles that were published in IEEE Xplore, Scopus, science direct and Springer from 2008 to 2023. It consist of steps; the first level is executed by filtrating the articles on the basis of keyword phase of title and abstract filter. Similarly, at two level the manuscripts are scanned through filter of eligibility criteria of articles selection. The last level belongs to the quality assessment of articles, in such level articles are rectified through evaluation of domain experts. Results. Finally, the selected articles are addressed with research questions and briefly discuss these selected state-of-the-art methods that are worked for the T wave classification. These address units behave as solutions to research problems that are highlighted in the form of research questions. Conclusion and future directions. During the survey process for these solutions, we got some critical observations in the form of gaps that reflected the other directions for researchers. In which feature engineering, different dependencies of ECG features and dimensional reduction of ECG for the better ECG analysis are reflection of future directions.

摘要

心电图是一种测量心脏血流循环不同模式的医学检查工具,包括常规和非侵入性模式。这些模式可用于识别心脏疾病的发病情况,特别是在某些心脏异常和心律失常的情况下。心肌梗死(MI)就是其中之一,它是由于心脏功能障碍导致血液突然阻塞而引起的。在心电图(ECG)中,MI 的强度是基于 T 波变化的异常模式来突出显示的。各种研究通过 T 波的分类对 MI 做出了贡献,但更重要的是,T 波一直吸引着 ECG 研究人员。方法。本研究主要旨在提出结合最新方法的组合,这些方法是为解决预先定义的研究问题而设计的。这些解决方案以系统综述过程(SLR)的形式设计,遵循 Kitchen ham 指南。文献调查是一个两阶段的过程,在第一阶段,从 2008 年到 2023 年,在 IEEE Xplore、Scopus、Science Direct 和 Springer 上收集已发表的文章。它包括以下步骤:第一级是通过基于标题和摘要过滤器的关键字阶段过滤文章来执行的。类似地,在第二级,通过文章选择的资格标准过滤器扫描手稿。最后一级属于文章质量评估,在该级别,通过专家评估来纠正文章。结果。最后,根据研究问题对选定的文章进行处理,并简要讨论这些针对 T 波分类的最新方法。这些处理单元作为以研究问题形式突出的研究问题的解决方案。结论和未来方向。在这些解决方案的调查过程中,我们以差距的形式得到了一些关键观察结果,这些差距反映了研究人员的其他方向。其中特征工程、心电图特征的不同依赖关系和心电图的降维是未来的方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b98/11149236/99aa1397206a/12874_2024_2251_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验