Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal.
Surgery Unit, Hospital Prof. Doutor Fernando Fonseca, Amadora, Portugal.
Nat Commun. 2024 Jun 5;15(1):4771. doi: 10.1038/s41467-024-49051-0.
Cancer patients often undergo rounds of trial-and-error to find the most effective treatment because there is no test in the clinical practice for predicting therapy response. Here, we conduct a clinical study to validate the zebrafish patient-derived xenograft model (zAvatar) as a fast predictive platform for personalized treatment in colorectal cancer. zAvatars are generated with patient tumor cells, treated exactly with the same therapy as their corresponding patient and analyzed at single-cell resolution. By individually comparing the clinical responses of 55 patients with their zAvatar-test, we develop a decision tree model integrating tumor stage, zAvatar-apoptosis, and zAvatar-metastatic potential. This model accurately forecasts patient progression with 91% accuracy. Importantly, patients with a sensitive zAvatar-test exhibit longer progression-free survival compared to those with a resistant test. We propose the zAvatar-test as a rapid approach to guide clinical decisions, optimizing treatment options and improving the survival of cancer patients.
癌症患者常常需要经过反复试验才能找到最有效的治疗方法,因为目前在临床实践中没有预测治疗反应的测试。在这里,我们进行了一项临床研究,以验证斑马鱼患者来源的异种移植模型(zAvatar)作为结直肠癌个性化治疗的快速预测平台。zAvatars 是通过患者的肿瘤细胞生成的,其治疗方法与相应患者完全相同,并在单细胞分辨率下进行分析。通过对 55 名患者的临床反应与其 zAvatar 测试进行单独比较,我们开发了一个整合肿瘤分期、zAvatar 细胞凋亡和 zAvatar 转移潜能的决策树模型。该模型能够以 91%的准确率准确预测患者的进展情况。重要的是,zAvatar 测试敏感的患者与测试耐药的患者相比,无进展生存期更长。我们提出 zAvatar 测试作为一种快速方法来指导临床决策,优化治疗方案,提高癌症患者的生存率。