College of System Engineering, National University of Defense Technology, Changsha, Hunan, China.
College of Information and Control Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, China.
Nat Commun. 2024 Jun 5;15(1):4779. doi: 10.1038/s41467-024-49151-x.
Despite the profound implications of self-organization in animal groups for collective behaviors, understanding the fundamental principles and applying them to swarm robotics remains incomplete. Here we propose a heuristic measure of perception of motion salience (MS) to quantify relative motion changes of neighbors from first-person view. Leveraging three large bird-flocking datasets, we explore how this perception of MS relates to the structure of leader-follower (LF) relations, and further perform an individual-level correlation analysis between past perception of MS and future change rate of velocity consensus. We observe prevalence of the positive correlations in real flocks, which demonstrates that individuals will accelerate the convergence of velocity with neighbors who have higher MS. This empirical finding motivates us to introduce the concept of adaptive MS-based (AMS) interaction in swarm model. Finally, we implement AMS in a swarm of ~10 miniature robots. Swarm experiments show the significant advantage of AMS in enhancing self-organization of the swarm for smooth evacuations from confined environments.
尽管自组织在动物群体中的集体行为中具有深远的意义,但对于群体机器人来说,理解其基本原理并将其应用仍然不完整。在这里,我们提出了一种运动显著性感知的启发式度量方法,用于从第一人称视角量化邻居的相对运动变化。利用三个大型鸟类集群数据集,我们探讨了这种 MS 感知如何与领导-跟随(LF)关系的结构相关联,进一步在个体水平上分析了过去的 MS 感知与未来速度共识变化率之间的相关性。我们观察到真实鸟群中存在普遍的正相关现象,这表明个体将加速与具有更高 MS 的邻居的速度收敛。这一经验发现促使我们在群体机器人模型中引入基于自适应 MS 的交互概念。最后,我们在一个由~10 个微型机器人组成的群体中实现了 AMS。群体实验表明,AMS 在增强群体的自组织能力方面具有显著优势,可实现从受限环境中的平滑疏散。