Suppr超能文献

超越脂质:探索脂质纳米颗粒时代中聚合物基因传递的新进展。

Beyond Lipids: Exploring Advances in Polymeric Gene Delivery in the Lipid Nanoparticles Era.

机构信息

Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA.

出版信息

Adv Mater. 2024 Aug;36(31):e2404608. doi: 10.1002/adma.202404608. Epub 2024 Jun 19.

Abstract

The recent success of gene therapy during the COVID-19 pandemic has underscored the importance of effective and safe delivery systems. Complementing lipid-based delivery systems, polymers present a promising alternative for gene delivery. Significant advances have been made in the recent past, with multiple clinical trials progressing beyond phase I and several companies actively working on polymeric delivery systems which provides assurance that polymeric carriers can soon achieve clinical translation. The massive advantage of structural tunability and vast chemical space of polymers is being actively leveraged to mitigate shortcomings of traditional polycationic polymers and improve the translatability of delivery systems. Tailored polymeric approaches for diverse nucleic acids and for specific subcellular targets are now being designed to improve therapeutic efficacy. This review describes the recent advances in polymer design for improved gene delivery by polyplexes and covalent polymer-nucleic acid conjugates. The review also offers a brief note on novel computational techniques for improved polymer design. The review concludes with an overview of the current state of polymeric gene therapies in the clinic as well as future directions on their translation to the clinic.

摘要

在 COVID-19 大流行期间,基因治疗的最近成功凸显了有效和安全的输送系统的重要性。除了基于脂质的输送系统外,聚合物为基因输送提供了一种很有前途的替代方法。在最近的过去已经取得了重大进展,多个临床试验已经进入 I 期之后阶段,几家公司正在积极研究聚合物输送系统,这确保了聚合物载体将很快能够实现临床转化。聚合物结构可调节性和巨大的化学空间的巨大优势正在被积极利用,以减轻传统阳离子聚合物的缺点并提高输送系统的可翻译性。现在正在设计针对不同核酸和特定亚细胞靶标的定制聚合物方法,以提高治疗效果。本综述描述了通过多聚物和共价聚合物-核酸缀合物改善基因传递的聚合物设计的最新进展。该综述还简要介绍了用于改进聚合物设计的新型计算技术。该综述以对临床中聚合物基因治疗的现状以及将其转化为临床应用的未来方向的概述结束。

相似文献

1
Beyond Lipids: Exploring Advances in Polymeric Gene Delivery in the Lipid Nanoparticles Era.
Adv Mater. 2024 Aug;36(31):e2404608. doi: 10.1002/adma.202404608. Epub 2024 Jun 19.
2
Nucleic Acid Nanocapsules as a New Platform to Deliver Therapeutic Nucleic Acids for Gene Regulation.
Acc Chem Res. 2025 Jul 1;58(13):1951-1962. doi: 10.1021/acs.accounts.5c00126. Epub 2025 Jun 9.
3
The Black Book of Psychotropic Dosing and Monitoring.
Psychopharmacol Bull. 2024 Jul 8;54(3):8-59.
7
Uncommon Non-MS Demyelinating Disorders of the Central Nervous System.
Curr Neurol Neurosci Rep. 2025 Jul 1;25(1):45. doi: 10.1007/s11910-025-01432-8.
8
Management of urinary stones by experts in stone disease (ESD 2025).
Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085.
10
Lipid-Polymer Hybrid Nanoparticles as a Smart Drug Delivery System for Peptide/Protein Delivery.
Pharmaceutics. 2025 Jun 19;17(6):797. doi: 10.3390/pharmaceutics17060797.

引用本文的文献

2
Advancing cancer gene therapy: the emerging role of nanoparticle delivery systems.
J Nanobiotechnology. 2025 May 20;23(1):362. doi: 10.1186/s12951-025-03433-8.
3
Recent Advances in mRNA Delivery Systems for Cancer Therapy.
Adv Sci (Weinh). 2025 Aug;12(29):e17571. doi: 10.1002/advs.202417571. Epub 2025 May 20.
4
Polymeric nanocarriers for therapeutic gene delivery.
Asian J Pharm Sci. 2025 Feb;20(1):101015. doi: 10.1016/j.ajps.2025.101015. Epub 2025 Jan 4.
5
Improving the use of CRISPR/Cas9 gene editing machinery as a cancer therapeutic tool with the help of nanomedicine.
3 Biotech. 2025 Jan;15(1):17. doi: 10.1007/s13205-024-04186-1. Epub 2024 Dec 19.

本文引用的文献

1
Polymer design SHAP and Bayesian machine learning optimizes pDNA and CRISPR ribonucleoprotein delivery.
Chem Sci. 2024 Apr 22;15(19):7219-7228. doi: 10.1039/d3sc06920f. eCollection 2024 May 15.
2
Pyridinium-Yne Click Polymerization: A Facile Strategy toward Functional Poly(Vinylpyridinium Salt)s with Multidrug-Resistant Bacteria Killing Ability.
Angew Chem Int Ed Engl. 2024 Jul 15;63(29):e202405030. doi: 10.1002/anie.202405030. Epub 2024 Jun 10.
3
Closing the Gap between Experiment and Simulation─A Holistic Study on the Complexation of Small Interfering RNAs with Polyethylenimine.
Mol Pharm. 2024 May 6;21(5):2163-2175. doi: 10.1021/acs.molpharmaceut.3c00747. Epub 2024 Feb 19.
5
Alkylated Sulfonium Modification of Low Molecular Weight Polyethylenimine to Form Lipopolymers as Gene Vectors.
ACS Omega. 2024 Jan 4;9(2):2339-2349. doi: 10.1021/acsomega.3c06255. eCollection 2024 Jan 16.
6
PEGylated therapeutics in the clinic.
Bioeng Transl Med. 2023 Sep 22;9(1):e10600. doi: 10.1002/btm2.10600. eCollection 2024 Jan.
7
Recent advances in drug delivery and targeting for the treatment of pancreatic cancer.
J Control Release. 2024 Feb;366:231-260. doi: 10.1016/j.jconrel.2023.12.053. Epub 2024 Jan 4.
8
Precision Sequence-Defined Polymers: From Sequencing to Biological Functions.
Angew Chem Int Ed Engl. 2024 Feb 5;63(6):e202313370. doi: 10.1002/anie.202313370. Epub 2023 Nov 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验