Usher Institute, University of Edinburgh, Edinburgh, United Kingdom.
School of Informatics, University of Edinburgh, Edinburgh, United Kingdom.
Invest Ophthalmol Vis Sci. 2024 Jun 3;65(6):10. doi: 10.1167/iovs.65.6.10.
To investigate whether fractal dimension (FD)-based oculomics could be used for individual risk prediction by evaluating repeatability and robustness.
We used two datasets: "Caledonia," healthy adults imaged multiple times in quick succession for research (26 subjects, 39 eyes, 377 color fundus images), and GRAPE, glaucoma patients with baseline and follow-up visits (106 subjects, 196 eyes, 392 images). Mean follow-up time was 18.3 months in GRAPE; thus it provides a pessimistic lower bound because vasculature could change. FD was computed with DART and AutoMorph. Image quality was assessed with QuickQual, but no images were initially excluded. Pearson, Spearman, and intraclass correlation (ICC) were used for population-level repeatability. For individual-level repeatability, we introduce measurement noise parameter λ, which is within-eye standard deviation (SD) of FD measurements in units of between-eyes SD.
In Caledonia, ICC was 0.8153 for DART and 0.5779 for AutoMorph, Pearson/Spearman correlation (first and last image) 0.7857/0.7824 for DART, and 0.3933/0.6253 for AutoMorph. In GRAPE, Pearson/Spearman correlation (first and next visit) was 0.7479/0.7474 for DART, and 0.7109/0.7208 for AutoMorph (all P < 0.0001). Median λ in Caledonia without exclusions was 3.55% for DART and 12.65% for AutoMorph and improved to up to 1.67% and 6.64% with quality-based exclusions, respectively. Quality exclusions primarily mitigated large outliers. Worst quality in an eye correlated strongly with λ (Pearson 0.5350-0.7550, depending on dataset and method, all P < 0.0001).
Repeatability was sufficient for individual-level predictions in heterogeneous populations. DART performed better on all metrics and might be able to detect small, longitudinal changes, highlighting the potential of robust methods.
通过评估重复性和稳健性,研究基于分形维数(FD)的眼动分析是否可用于个体风险预测。
我们使用了两个数据集:“Caledonia”,是对快速连续多次成像的健康成年人进行研究(26 名受试者,39 只眼,377 张眼底彩色图像);以及 GRAPE,是青光眼患者的基线和随访访问(106 名受试者,196 只眼,392 张图像)。GRAPE 的平均随访时间为 18.3 个月;因此,这提供了一个悲观的下限,因为血管可能会发生变化。使用 DART 和 AutoMorph 计算 FD。使用 QuickQual 评估图像质量,但最初没有排除任何图像。采用 Pearson、Spearman 和组内相关系数(ICC)评估群体水平的重复性。对于个体水平的重复性,我们引入了测量噪声参数 λ,这是 FD 测量值在单位为眼间标准差(SD)的眼内标准差。
在 Caledonia 中,DART 的 ICC 为 0.8153,AutoMorph 的 ICC 为 0.5779;Pearson/Spearman 相关性(第一和最后一张图像)分别为 0.7857/0.7824 和 0.3933/0.6253。在 GRAPE 中,DART 的 Pearson/Spearman 相关性(第一和下一次访问)分别为 0.7479/0.7474,AutoMorph 的 Pearson/Spearman 相关性分别为 0.7109/0.7208(均 P < 0.0001)。在不排除任何图像的情况下,Caledonia 中 DART 的中位数 λ 为 3.55%,AutoMorph 的 λ 为 12.65%;而通过基于质量的排除,分别降低至最高 1.67%和 6.64%。质量排除主要减轻了大的离群值。一只眼中最差的质量与 λ 强烈相关(Pearson 0.5350-0.7550,取决于数据集和方法,均 P < 0.0001)。
在异质人群中,重复性足以进行个体水平的预测。在所有指标上,DART 的表现都更好,并且可能能够检测到小的、纵向的变化,突出了稳健方法的潜力。