Suppr超能文献

HookEfficientNet 深度神经网络的新视角:非小细胞肺癌的智能组织病理学识别系统。

New vision of HookEfficientNet deep neural network: Intelligent histopathological recognition system of non-small cell lung cancer.

机构信息

College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.

KYOCERA Communication Systems Co., Ltd, Kyoto, Japan.

出版信息

Comput Biol Med. 2024 Aug;178:108710. doi: 10.1016/j.compbiomed.2024.108710. Epub 2024 Jun 4.

Abstract

BACKGROUND

Efficient and precise diagnosis of non-small cell lung cancer (NSCLC) is quite critical for subsequent targeted therapy and immunotherapy. Since the advent of whole slide images (WSIs), the transition from traditional histopathology to digital pathology has aroused the application of convolutional neural networks (CNNs) in histopathological recognition and diagnosis. HookNet can make full use of macroscopic and microscopic information for pathological diagnosis, but it cannot integrate other excellent CNN structures. The new version of HookEfficientNet is based on a combination of HookNet structure and EfficientNet that performs well in the recognition of general objects. Here, a high-precision artificial intelligence-guided histopathological recognition system was established by HookEfficientNet to provide a basis for the intelligent differential diagnosis of NSCLC.

METHODS

A total of 216 WSIs of lung adenocarcinoma (LUAD) and 192 WSIs of lung squamous cell carcinoma (LUSC) were recruited from the First Affiliated Hospital of Zhengzhou University. Deep learning methods based on HookEfficientNet, HookNet and EfficientNet B4-B6 were developed and compared with each other using area under the curve (AUC) and the Youden index. Temperature scaling was used to calibrate the heatmap and highlight the cancer region of interest. Four pathologists of different levels blindly reviewed 108 WSIs of LUAD and LUSC, and the diagnostic results were compared with the various deep learning models.

RESULTS

The HookEfficientNet model outperformed HookNet and EfficientNet B4-B6. After temperature scaling, the HookEfficientNet model achieved AUCs of 0.973, 0.980, and 0.989 and Youden index values of 0.863, 0.899, and 0.922 for LUAD, LUSC and normal lung tissue, respectively, in the testing set. The accuracy of the model was better than the average accuracy from experienced pathologists, and the model was superior to pathologists in the diagnosis of LUSC.

CONCLUSIONS

HookEfficientNet can effectively recognize LUAD and LUSC with performance superior to that of senior pathologists, especially for LUSC. The model has great potential to facilitate the application of deep learning-assisted histopathological diagnosis for LUAD and LUSC in the future.

摘要

背景

非小细胞肺癌(NSCLC)的高效准确诊断对于后续的靶向治疗和免疫治疗至关重要。自从全切片图像(WSI)出现以来,从传统组织病理学向数字病理学的转变引发了卷积神经网络(CNN)在组织病理学识别和诊断中的应用。HookNet 可以充分利用宏观和微观信息进行病理诊断,但它不能集成其他优秀的 CNN 结构。新版本的 HookEfficientNet 是基于 HookNet 结构和在一般对象识别中表现出色的 EfficientNet 的结合。在这里,通过 HookEfficientNet 建立了高精度人工智能引导的组织病理学识别系统,为 NSCLC 的智能鉴别诊断提供了依据。

方法

从郑州大学第一附属医院共招募了 216 例肺腺癌(LUAD)和 192 例肺鳞癌(LUSC)的 WSI。开发了基于 HookEfficientNet、HookNet 和 EfficientNet B4-B6 的深度学习方法,并通过曲线下面积(AUC)和 Youden 指数进行了比较。采用温度缩放校准热图并突出癌症感兴趣区域。4 名不同级别的病理学家对 108 例 LUAD 和 LUSC 的 WSI 进行了盲法复查,并将诊断结果与各种深度学习模型进行了比较。

结果

HookEfficientNet 模型优于 HookNet 和 EfficientNet B4-B6。经过温度缩放后,在测试集中,HookEfficientNet 模型在 LUAD、LUSC 和正常肺组织中的 AUC 分别为 0.973、0.980 和 0.989,Youden 指数分别为 0.863、0.899 和 0.922。模型的准确率优于有经验病理学家的平均准确率,且在 LUSC 诊断方面优于病理学家。

结论

HookEfficientNet 可以有效识别 LUAD 和 LUSC,性能优于高级病理学家,尤其是对 LUSC。该模型在未来有望促进深度学习辅助组织病理学诊断在 LUAD 和 LUSC 中的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验