Department of Pharmacology, University of Fribourg, Faculty of Science and Medicine, Fribourg, 1700, Switzerland.
Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
Redox Biol. 2024 Jul;73:103222. doi: 10.1016/j.redox.2024.103222. Epub 2024 Jun 4.
Cystathionine β-synthase (CBS)-deficient homocystinuria (HCU) is an inherited disorder of sulfur amino acid metabolism with varying severity and organ complications, and a limited knowledge about underlying pathophysiological processes. Here we aimed at getting an in-depth insight into disease mechanisms using a transgenic mouse model of HCU (I278T).
We assessed metabolic, proteomic and sphingolipidomic changes, and mitochondrial function in tissues and body fluids of I278T mice and WT controls. Furthermore, we evaluated the efficacy of methionine-restricted diet (MRD) in I278T mice.
In WT mice, we observed a distinct tissue/body fluid compartmentalization of metabolites with up to six-orders of magnitude differences in concentrations among various organs. The I278T mice exhibited the anticipated metabolic imbalance with signs of an increased production of hydrogen sulfide and disturbed persulfidation of free aminothiols. HCU resulted in a significant dysregulation of liver proteome affecting biological oxidations, conjugation of compounds, and metabolism of amino acids, vitamins, cofactors and lipids. Liver sphingolipidomics indicated upregulation of the pro-proliferative sphingosine-1-phosphate signaling pathway. Liver mitochondrial function of HCU mice did not seem to be impaired compared to controls. MRD in I278T mice improved metabolic balance in all tissues and substantially reduced dysregulation of liver proteome.
The study highlights distinct tissue compartmentalization of sulfur-related metabolites in normal mice, extensive metabolome, proteome and sphingolipidome disruptions in I278T mice, and the efficacy of MRD to alleviate some of the HCU-related biochemical abnormalities.
胱硫醚β-合酶(CBS)缺乏型高同型半胱氨酸血症(HCU)是一种硫氨基酸代谢遗传疾病,具有不同的严重程度和器官并发症,对潜在的病理生理过程知之甚少。在这里,我们使用 HCU(I278T)的转基因小鼠模型来深入了解疾病机制。
我们评估了 I278T 小鼠和 WT 对照组织和体液中的代谢、蛋白质组学和鞘脂组学变化以及线粒体功能。此外,我们还评估了蛋氨酸限制饮食(MRD)在 I278T 小鼠中的疗效。
在 WT 小鼠中,我们观察到代谢物具有明显的组织/体液分区化,各种器官之间的浓度差异高达六个数量级。I278T 小鼠表现出预期的代谢失衡,表现为硫化氢产量增加和游离氨硫醇的过硫化作用紊乱。HCU 导致肝脏蛋白质组显着失调,影响生物氧化、化合物结合以及氨基酸、维生素、辅因子和脂质的代谢。肝鞘脂组学表明促增殖的鞘氨醇-1-磷酸信号通路上调。与对照组相比,HCU 小鼠的肝线粒体功能似乎没有受损。MRD 在 I278T 小鼠中改善了所有组织的代谢平衡,并大大减轻了肝脏蛋白质组的失调。
该研究强调了正常小鼠中硫相关代谢物的明显组织分区化、I278T 小鼠中广泛的代谢组、蛋白质组和鞘脂组学紊乱,以及 MRD 缓解一些 HCU 相关生化异常的疗效。