Suppr超能文献

一种多物种层次模型,用于整合计数和距离抽样数据。

A multispecies hierarchical model to integrate count and distance-sampling data.

机构信息

Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan, USA.

Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA.

出版信息

Ecology. 2024 Jul;105(7):e4326. doi: 10.1002/ecy.4326. Epub 2024 Jun 6.

Abstract

Integrated community models-an emerging framework in which multiple data sources for multiple species are analyzed simultaneously-offer opportunities to expand inferences beyond the single-species and single-data-source approaches common in ecology. We developed a novel integrated community model that combines distance sampling and single-visit count data; within the model, information is shared among data sources (via a joint likelihood) and species (via a random-effects structure) to estimate abundance patterns across a community. Parameters relating to abundance are shared between data sources, and the model can specify either shared or separate observation processes for each data source. Simulations demonstrated that the model provided unbiased estimates of abundance and detection parameters even when detection probabilities varied between the data types. The integrated community model also provided more accurate and more precise parameter estimates than alternative single-species and single-data-source models in many instances. We applied the model to a community of 11 herbivore species in the Masai Mara National Reserve, Kenya, and found considerable interspecific variation in response to local wildlife management practices: Five species showed higher abundances in a region with passive conservation enforcement (median across species: 4.5× higher), three species showed higher abundances in a region with active conservation enforcement (median: 3.9× higher), and the remaining three species showed no abundance differences between the two regions. Furthermore, the community average of abundance was slightly higher in the region with active conservation enforcement but not definitively so (posterior mean: higher by 0.20 animals; 95% credible interval: 1.43 fewer animals, 1.86 more animals). Our integrated community modeling framework has the potential to expand the scope of inference over space, time, and levels of biological organization, but practitioners should carefully evaluate whether model assumptions are met in their systems and whether data integration is valuable for their applications.

摘要

综合社区模型——一种新兴的框架,可同时分析多个物种的多个数据源——为扩展推断提供了机会,超越了生态学中常见的单一物种和单一数据源方法。我们开发了一种新的综合社区模型,该模型结合了距离抽样和单次计数数据;在模型中,信息在数据源(通过联合似然)和物种(通过随机效应结构)之间共享,以估计整个社区的丰度模式。与丰度相关的参数在数据源之间共享,并且模型可以为每个数据源指定共享或单独的观测过程。模拟表明,即使在不同数据类型之间检测概率存在差异,该模型也能提供无偏的丰度和检测参数估计。在许多情况下,综合社区模型还提供了比替代的单一物种和单一数据源模型更准确和更精确的参数估计。我们将该模型应用于肯尼亚马赛马拉国家保护区的 11 种食草动物群落,并发现了物种间对当地野生动物管理实践的反应存在很大差异:在被动保护执法的地区,有 5 个物种的丰度较高(跨物种中位数:高出 4.5 倍),在积极保护执法的地区,有 3 个物种的丰度较高(中位数:高出 3.9 倍),其余三个物种在两个地区的丰度没有差异。此外,在积极保护执法的地区,群落的平均丰度略高,但并不确定(后验均值:高出 0.20 个动物;95%可信区间:少 1.43 个动物,多 1.86 个动物)。我们的综合社区建模框架有可能扩展在空间、时间和生物组织层次上的推断范围,但从业者应仔细评估其系统中模型假设是否得到满足,以及数据集成是否对其应用有价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验